
ABSTRACT
The use of 3D modelling in geosciences has become increasingly present 

in its various applied areas nowadays. This chapter presents a compilation of 
the international CO๗ storage resource assessment methodologies and their 
correlation with the use of computational 3D geological modelling techniques 
currently available through commercial software and open-source alternatives. 
The applications of these techniques are then discussed concerning the existing 
spatial data available in the Paraná and Santos sedimentary basins, aiming at 
assessing possible reservoirs for CO๗ geological storage. The steps from site 
selection to initial characterization are addressed, including determining storage 
capacity according to international standards. 
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1. INTRODUCTION
In the current world climate change scenario where we are experiencing 

global warming driven by anthropic emissions of greenhouse gases, there is an 
increasing search for technologies that reduce the planet’s average temperature. 
Many alternatives have been proposed (Lawrence et al., 2018). They include the 
injection of sulfur dioxide into the atmosphere (Visioni et al. 2017), space-based solar 
refl ectors (Salazar et al. 2016), the covering of deserts, oceans, or grasslands with 
mirrors that refl ect the solar radiation (Salter et al. 2008), ocean iron fertilization 
(Williamson et al. 2012), and sea spray (Partanen et al. 2012). Among all these 
alternative technologies, the one that has proven most plausible for implementation 
in the last few decades is the CO๗ geological storage, including 27 initiatives already 
in operation presently and more than 62 under development (Global-CCS-Institute 
2021). The technology of CO๗ storage integrates a chain of activities that involves 
trapping the carbon dioxide at its emission source, transporting it to a storage 
location, and isolating it, named Carbon Capture and Storage (CCS). 

The present chapter discusses the use of 3D geological modelling to evaluate 
potential sites for CO๗ storage, briefl y addressing the geological environments 
currently considered for storage, working scales, and evaluation stages of a given 
location. The types and techniques of 3D geological modelling presently available 
are presented and illustrated with some existing examples when possible or with 
similar applications. 

2.3D GEOLOGICAL MODELLING IN GEOSCIENCES
3D geological modelling comprises a group of methods used for compute-

rized representations of any geological body or surface in three dimensions via 
specialized software, whose fi nal product is generally known as the geological 
model. 3D geological modelling has a wide range of applications, including but 
not limited to oil and gas reservoirs, mineral deposits, contamination plumes, 
groundwater aquifers, nuclear waste underground storage and tunnels, and 
other underground engineering works. Some examples of application in the oil 
and gas sector include Bueno et al. (2011); Bigi et al. (2013); Durand-Riard et al. 
(2013); Aadil and Sohail (2014); Altameemi and Alzaidy (2018); Alhakeem et 
al. (2019); Trentin et al. (2019); Ali et al. (2020); Palci et al. (2020); Islam et al. 
(2021). Tectonic approaches through 3D modelling are seen in Brun et al. (2001); 
Courrioux et al. (2001); Do Couto et al. (2015); de Kemp et al. (2016); Thornton 
et al. (2018); dos Santos et al. (2019); Lesage et al. (2019); Molezzi et al. (2019). 
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Some examples of 3D geological modelling supporting mineral exploration are 
seen in Fallara et al. (2006); de Kemp (2007); Wang et al. (2011); Yuan et al. (2014); 
Wang et al. (2015); de Kemp et al. (2016); Li et al. (2019); Mao et al. (2019); Wang 
et al. (2019). 3D modelling applications in a wide range of ore deposits types and 
geometries can be found in Gumiel et al. (2010); Hill et al. (2014); Vollgger et al. 
(2015); Basson et al. (2016); Liu et al. (2016); Schetselaar et al. (2016); Pavičić et al. 
(2018); Stoch et al. (2018); Braga et al. (2019); Xiang et al. (2019); de Oliveira and 
Sant’Agostino (2020); Arias et al. (2021); de Oliveira et al. (2021a). Applications 
of 3D modelling on hydrogeology include Artimo et al. (2003); Cox et al. (2013); 
Hassen et al. (2016); Magnabosco et al. (2020); D’Aff onseca et al. (2020). The 
use of 3D modelling in geothermal reservoirs is presented in Milicich et al. 
(2010), Milicich et al. (2014), Alcaraz et al. (2015); Poux et al. (2018); Calcagno 
et al. (2020). Other examples of 3D geological modelling use include the urban 
and infrastructure areas like Breunig and Zlatanova (2011) and He et al. (2020) 
and in the diff erentiation of soils (Queiroz et al. 2017). From this extensive list of 
references, it is noticed that the application of 3D geological models in several 
areas of geosciences started to appear more often from the 2000s and grew in 
recent years. As it is a knowledge area of geosciences in constant expansion due 
to the recent advances in computer graphics and software technology, there are 
no limits for new and innovative applications. 

A reference book with terms defi nitions in 3D geological modelling and 
richly illustrated examples of diverse geological applications is “3D geoscience 
modelling: computer techniques for geological characterization” (Houlding, 1994). 
A more recent review of the state-of-the-art geological modelling methods includes 
Wellmann and Caumon (2018). Other books that also address 3D modelling but 
are already in some specifi c geoscience fi elds are Merriam and Davis (2001) in 
sedimentary systems, Groshong Jr (2006) in structural geology, Rossi and Deutsch 
(2013) in mineral resources, and Pyrcz and Deutsch (2014) in oil and gas reservoirs 
modelling. Perrin et al. (2005) presented a geo-ontology proposal, defi ning a 
set of terms for using, sharing, revising, and updating 3D geological models by 
diff erent users over time. Three special issues of Minerals journal were devoted to 
the 3D geological modelling theme, “Geological Modelling” (2018); “Geological 
Modelling, Volume II” (2020); “3D-Modelling of Crustal Structures and Mineral 
Deposit Systems” (2021). Some specifi c events and conferences on 3D geological 
modelling include the workshops held in GSA Annual Meetings, United States 
(2001, 2002, 2004, 2007, 2009, 2011, 2013, 2015), and in the Resources for Future 
Generations (RFG), Canada (2018), the European Meetings on 3D Geological 
Modelling (2013, 2014, 2016, 2018, 2019), and the Visual 3D Conference 2019. 
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The advantages of 3D geological modelling include expanding the analysis 
of conventional geological data by visualizing continuities, clusters and spatial 
trends, geometries of geological bodies or units, structural geological frame-
work, and variation of geochemical contents or any other numerical parameters 
in geosciences. CO๗ storage models are applied the same way as in oil and gas 
reservoirs evaluations. They are also used to defi ne suitable reservoir-seal pairs 
for the trapping of CO๗. It aims to better understand the spatial variability and 
continuity of the reservoir and seals facies interpretations. The 3D analysis also 
allowed the ranking of more favourable and unfavourable facies. The main variables 
from petrophysical wireline logs that can be visualized and estimated in 3D are 
usually porosity, permeability, and water saturation, considering saline aquifers 
and depleted reservoirs. In coal seams and shales, the adsorption capacity and 
total organic carbon (TOC) are important variables of interest. 

Some case studies with the specifi c application of 3D modelling in CO๗ 
geological storage are present in the literature (Kaufmann and Martin 2008; 
Douglass and Kelly 2010; Gunnarsson 2011; Monaghan et al. 2012; Alcalde et al. 
2014; Lech et al. 2016; Mediato et al. 2017; Shogenov et al. 2017; Vo Thanh et al. 
2019; Zhong and Carr 2019). These examples focus mainly on defi ning the volume 
capacity to support resource assessment (discussed in the following sections). A 
diff erent application is the 3D geomechanical model presented by Vidal-Gilbert 
et al. (2009), which evaluates the changing of in situ stress caused by increased 
pore pressure during CO๗ injection. 

The term geological modelling discussed in this text is not synonymous 
with numeric modelling, a widely applied technique in geosciences that uses 
computational simulation to describe the physical conditions of geological 
scenarios through numbers and equations (Ismail-Zadeh and Tackley 2010). A 
numeric model could be performed on a grid or a block model with previous 
domains defi ned by geological modelling, but this interrelation is not mandatory. 
The use of numeric models in the CO๗ geological storage is better discussed and 
exemplifi ed in Chapter 8. 

3.3D MODELLING TECHNIQUES
3D geological models may consist of 3D solid surfaces or 3D block models, 

or both, depending on what features or geological bodies one wants to represent 
in the three-dimensional space. Generally, the block models are used when the 
objective is to know some variable in more detail or resolution in a more signifi cant 
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number of points in the space when then estimation, interpolation, or assignments 
of values are applied to a given block. On the other hand, 3D surfaces are helpful in 
defi ning spatial domains, geometries or volumes, and understanding interactions 
between geological planes. The surfaces or solids generation techniques could 
be classifi ed as explicit, traditional and implicit modelling (Cowan et al., 2003). 

In explicit modelling, the geological interpretation usually comes from poly-
lines drawn directly in 2D projections or digitalized from paper sections with drill 
holes, wells, geophysical, or any other source of geological data. Generating 3D 
solids or surfaces requires the polylines to be linked individually and triangulated 
through tie lines (Fig. 1A). In the implicit modelling, the surfaces to be generated 
are therefore not constructed directly, as done in the explicit method, but instead 
are created now from selected points, which could be geological contacts in a well 
(Fig. 1B). A function is defi ned throughout space by specifying the function values 
at selected points and interpolating them through the rest of the space (Cowan 
et al., 2003). Manual polyline digitization and triangulation in explicit modelling 
are more labour intensive. These polylines are generated semi-automatically with 
implicit modelling, allowing automatic updates as new data is available. It is not 
possible in models consisting of explicit surface triangulations. In some complex 
cases, the implicit modelling could not be applied as a stand-alone technique, and 
both of them need to be integrated to get a better result. More in-depth descriptions 
of these techniques and comparatives can be found in Savchenko et al. (1995), 
Carr et al. (2001), Cowan et al. (2002); (Cowan et al. 2003; Cowan et al. 2004), 
Turner (2006), Knight et al. (2007), Birch (2014), Jessell et al. (2014). 

Geological contacts and domains could also be defi ned directly on a block 
model or grid generating a probabilistic model. In the probabilistic approach, the 
domains of interest are not defi ned by surfaces, called meshes or wireframes, 
representing the geological contacts or faults. Instead, a block model is generated 
for the studied region. Then, the probability of each block being or not being 
of a certain lithology or a particular fault side is determined. The probability 
estimation in each block is performed by geostatistical techniques, commonly 
indicator kriging, and then by applying threshold values, portions or domains of 
interest are defi ned inside the model (Fig. 1C). Geostatistical methods used on 
categorical variables are better presented, discussed, and exemplifi ed in Journel 
(1983), Rivoirard (1994), Olea (1999), Lloyd and Atkinson (2001), de Oliveira and 
Rocha (2011), Pyrcz and Deutsch (2014), Rivoirard et al. (2014). 

Several commercial software packages are available nowadays with explicit 
and implicit 3D modelling engines, as well as geostatistical modules that allow 
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generating probabilistic models, citing: Surpac, Gems, Minesight, Vulcan, 
Isatis, EarthVision, GeoModeller, Datamine, GoCAD, Leapfrog, Move, Petrel, 
Micromine, among others. Open-source packages for 3D geological modelling 
are also available, citing: GemPy (de la Varga et al. 2019; Schaaf et al. 2020); and 
Loop 3D (Grose et al. 2020; Jessell et al. 2021). 

The modelling of the fi ve main geological environments (saline aquifers, 
oil and gas reservoirs, coal seams, shale, and basalts) where the CO๗ storage has 
been studied is related to sedimentary basins. The proper characteristics required 
for CO๗ storage include non-location in the fold and thrust belts and limited to 
moderate structures (Chadwick et al. 2008; IEA-GHG 2009; Smith et al. 2011). 
The 3D geological models tend to be more straightforward in these environments. 
The sedimentary contacts are represented commonly by fl at smooth, stacked 
surfaces. Points generate these surfaces or polylines interpreted from seismic data 
and the contact points from wells in the subsurface (Fig. 2). The interpretation of 
distinguished facies with sharped erosional contact could be a challenge for the 
three-dimension representation due to the complexities involved in the interaction 
of inter-cutting surfaces. A little bit of complexity may emerge when trying to 
represent possible fault sets. The most common types are steeply deep normal 
faults, characteristic of extensional regimes (Etheridge et al. 1985). The fault planes 
are generated by surface traces interpreted from radar data or satellite images 
and seismic interpretation.

4. UNCERTAINTY IN GEOLOGICAL MODELLING
Modelling the subsurface geometry is known to be uncertain. Modelling 

uncertainty is not a goal on its own; usually, it is needed to answer a particular 
question raised. The subsurface medium’s heterogeneity (fl uids and soils/rocks) is 
a critical parameter infl uencing the decision. Rarely, we have perfect information 
to model the geological variability of the subsurface deterministically. Hence, there 
is a need to model all aspects of uncertainty related to subsurface heterogeneity. 
Several sources of data are available to constrain the models of uncertainty built. 
These data sources can be remarkably diverse, from wells (driller’s logs, well-log, 
cores, etc.) to geophysical or remote sensing measurements. Tying all this data 
into a single uncertainty model without making too many assumptions about the 
relationships between various data sources is quite challenging (Caers 2011). 

The traditional geostatistical approach for purposes of uncertainty calculation 
in geological modelling is carried out, generally, through the sequential simulation 
of categorical variables, of which stand out truncated Gaussian simulation (Journel 



101

Use of 3D Modelling in the CO
2
 Geological Storage, Possible Applications for Paraná and Santos Basins

and Isaaks 1984; Matheron et al. 1987; Xu and Journel 1993) and the sequential 
stimulation of the indicators (Journal and Alabert 1989; Alabert and Massonnat 
1990). As initially proposed, the sequential simulation’s goal is the reproduction of 
the histogram and the covariance model of the properties to be simulated through 
the sequential drawing of conditional distributions. Each grid node is randomly 
visited sequentially, and simulated values are taken from the conditional distribution 
of value on that node, based on the data neighbourhood and previously simulated 
nodes. Other examples of simulation techniques used in geological modelling 
are object-based algorithms or Booleans (Haldorsen and Lake 1984; Stoyan et 
al. 1987), process-based algorithms (Bridge and Leeder 1979; Lopez et al. 2001), 
surface-based modelling methods (Xie et al. 2001; Pyrcz and Deutsch 2014) and 
multi-point simulation algorithms based on pixels (pixel-based) (Guardiano and 
Srivastava 1993; Strebelle 2002). 

5. CO2 STORAGE RESOURCE ASSESSMENT METHODOLOGIES
The classifi cation systems for the assessment stages of a given site for CO๗ 

geologic storage (Goodman et al. 2011; Rodosta et al. 2011) follow the same 
processes developed by the petroleum industry (Etherington and Ritter 2008) in a 
bottom-up progression based on analyses conducted to reduce the project develo-
pment risk (Fig. 3). Here the application of 3D geological modelling is approached 
in the Exploration phase, which comprises three stages in increasing order of 
geological knowledge: Site Screening, Site Selection, and Initial Characterization 
corresponding to each resource class: Potential Sub-Regions, Selected Areas, and 
Qualifi ed Site (Goodman et al. 2011; Rodosta et al. 2011). The main technical site 
selection criteria for geological CO๗ storage (Chadwick et al. 2008; IEA-GHG 
2009; Smith et al. 2011) are compiled in Table 1. 

6. EXPLORATION PHASE
One of the fi rst parameters to evaluate in any subsurface units suitable for 

CO๗ geologic storage is a depth of approximately 800 m or more (Chadwick et 
al., 2008; IEA-GHG, 2009; Smith et al., 2011; Miocic et al., 2016) regarding the 
CO๗ injected will be in the supercritical condition being in these temperatures 
and pressures. The CO๗ is stable as a supercritical fl uid at a temperature and a 
pressure above a critical point: 31 ºC and 7.38 MPa, respectively. For these initial 
appraisals, 3D models of superimposed layers on the formation of interest can be 
generated on a basin or regional scale from seismic, exploration well, and outcrop 
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data during the Site Screening or Site Selection stages, indicating more or less 
favourable regions. Similarly, areas with thickness with at least 20 m (Chadwick et 
al., 2008; IEA-GHG, 2009), caprock thickness with at least 10 to 20 m (Chadwick 
et al., 2008; IEA-GHG, 2009; Smith et al., 2011), and a safe distance to protected 
groundwater (IEA-GHG, 2009) could be determined using 3D models. However, 
in this case, this evaluation would probably occur during the site selection stage 
since wireline logs with seismic information are needed. A 3D structural model 
based on seismic data is generated during the site selection stage, indicating 
possible structural traps favourable for CO๗ reservoirs or areas of less incidence 
of faults avoiding potential gas leaks (Chadwick et al., 2008; IEA-GHG, 2009; 
Smith et al., 2011). 

The evaluation of whether a basin or portion is located within a fold belt 
(IEA-GHG, 2009), reservoir-seal pairs, and a favourable stratigraphy (IEA-
GHG, 2009; Smith et al., 2011; Miocic et al., 2016) is made at the Site Screening 
stage. Nevertheless, nothing prevents that with a 3D geological model developed 
during the assessment advance with new data addition, already in the Initial 
Characterization stage, the local stratigraphy and structural context may prove 
more or less favourable, for example, with details of internal facies of a given 
formation. The addition of a small number of wells or new seismic surveys could 
dramatically change the interpretation and evaluation of a given area or site. 

So we can see that the volumetric evaluation of the CO๗ storage site, where 
modelling has been applied more frequently (Gunnarsson, 2011; Alcalde et al., 
2014; Lech et al., 2016; Mediato et al., 2017; Shogenov et al., 2017; Vo Thanh et 
al., 2019; Zhong and Carr, 2019), will only occur eff ectively and commonly in the 
Initial Characterization stage. Nevertheless, 3D modelling can also be applied in a 
basin-scale approach at an early stage of exploration (Douglass and Kelly, 2010). 
An example of 3D geological modelling used in both Site Selection and Initial 
Characterization stages could be seen in de Oliveira et al. (2021b). 

7. SITE CHARACTERIZATION
The U. S. Department of Energy (DOE) methodologies for capacity calculations 

for the distinguished major geologic media: depleted oil and gas reservoirs, saline 
formations, unmineable coal seams (Goodman et al. 2011), and organic-rich shales 
(Goodman et al. 2014) are briefl y described next. Other similar volumetric-based 
methodologies were also developed for CO๗ storage resource assessment (Bachu 
et al. 2007; Brennan et al. 2010; Bradshaw et al. 2011; Spencer et al. 2011) and 
were compared and discussed in detail by Popova et al. (2012). 



103

Use of 3D Modelling in the CO
2
 Geological Storage, Possible Applications for Paraná and Santos Basins

The general equation to calculate the CO๗ storage resource mass estimate for 
geologic storage in oil and gas reservoirs is based on the standard industry method 
to calculate original gas or oil-in-place (Dake 1983) as follows:

 (1)

where Gco๗ is CO๗ mass, A is the area, hඇ is the net thickness, Φ is the eff ective 
porosity, Sw  is the water saturation, B is the initial oil (or gas) formation volume 
factor, ρco૟std is the standard CO๗ density, and Eoil/gas is the storage effi  ciency 
factor, that refl ects the volume of CO๗ stored in an oil or gas reservoir per unit 
volume of original oil or gas in place. 

The equation to calculate the CO๗ storage resource mass estimate for geologic 
storage in saline formations is:

 (2)

where is the gross thickness, ρco๗ is the density of CO๗ evaluated at pres-
sure and temperature that represents storage conditions anticipated for a specifi c 
geologic unit, and is the storage effi  ciency factor, refl ecting the fraction of 
the total pore volume that the injected CO๗ will fi ll. 

The equation to calculate the CO๗ storage resource mass estimate for geologic 
storage in unmineable coal seams:

(3)

Where is the maximum CO๗ volume at standard conditions that can 
be sorbed per volume of coal, assumed to be on an in situ or “as is” basis, and 
Ecoal is the storage effi  ciency factor, which refl ects a fraction of the total coal 
bulk volume that CO๗ contacts. 

The equation to calculate the CO๗ storage resource mass estimate for geologic 
storage in shales:

  (4)
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where ρsco๗ is the mass of CO๗ sorbed per unit volume of solid rock, and 
Eൺ, , , and are effi  ciency factors for the area, thickness, pore-volume, and 
sorbed volume, respectively (see Goodman et al. 2014 for more details). 

Note that all of them use volumetric-based CO๗ storage estimates being 
computationally equivalent. The volume of a given geological layer (A x h), in 
(1) to (4) equations, can be obtained through the application of the 3D geological 
modelling techniques presented here with certain precision - depending on the 
data that support them. 

In the present methodologies and the general approach discussed in this text, 
the 3D models are being considered to use static volumetric models based on 
commonly accepted assumptions about in-situ fl uid distribution in porous media 
and fl uid displacement processes. Currently, most studies are focused on evaluating 
possible new locations for CO๗ storage. However, 3D geological models can also 
be used jointly with numerical models, as already mentioned, in the management 
and monitoring of reservoirs during their injection life (see Chapter 8). A dynamic 
volume would be considered in this case because detailed site injectivity and 
pressure data are most commonly available only after CO๗ injection. 

When production-based data are available, they should be preferred over 
a new volumetric-based model estimate in the specifi c case of an evaluation of 
depleted oil and gas reservoirs. Production data contain general detailed information 
collected from the formation. 

Similarly to the mineral industry (CRIRSCO 2019) and the oil and gas 
industry (Etherington and Ritter 2008), for reporting of CO๗ storage capacity, 
a technical-economic classifi cation system was proposed (Bachu et al. 2007) 
according to an increasing level of geological knowledge and confi dence based on 
a pyramid (Fig. 4). Storage capacity in this pyramid is expressed in mass CO๗ (e. 
g., Mt or Gt CO๗) rather than volume because the volume of a given mass of stored 
CO๗ depends on the pressure and temperature at which it is stored (Bachu et al. 
2007). Four technical and economic classes are considered: Theoretical, Eff ective, 
Practical, and Matched capacity. A Theoretical capacity assumes that the whole of 
reservoir formation is accessible to store CO๗, providing a maximum upper limit 
to a capacity estimate. The application of technical constraints as cut-off  limits of 
porosity and permeability, and limiters as seal quality, depth of burial, pressure 
and stress regimes, the reservoir’s pore volume, and trap determines the Eff ective 
capacity. The practical capacity considers economic, legal, and regulatory barriers 
to CO๗ geological storage beyond just geoscience and engineering aspects. It 
corresponds to the reserves used in the petroleum and mining industries. 
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The Matched capacity refers to the detailed matching of signifi cant stationary 
CO๗ sources with adequate geological storage sites considering potential, injecti-
vity, and supply rate. Other refi nements and modifi cations of the initial pyramid 
have been proposed recently (Ackhurst et al. 2011; Bunch 2013; Anderson 2017; 
Vasilis et al. 2018; Mikhelkis and Govindarajan 2020), although all considering 
a decrease in the geological and economic uncertainty of the classes from the 
bottom to the top. 

Most mineral resource and ore reserve classifi cation systems adopted are 
based on sampling spacing, geological confi dence, and economic viability. These 
systems defi ne categories of resources based on a degree of uncertainty associated 
with parameters being estimated. Evaluation and classifi cation are included in 
the mineral resource and CO๗ geological storage sites assessment. Drilling and 
sampling combined with quality assurance and quality control practices syste-
matically update this process. New and sophisticated methods used for modelling 
and evaluation are worthless if sampling, preparation, and chemical assays are not 
adequately controlled and validated. The procedure selected for the CO๗ geological 
storage sites classifi cation should have some required characteristics. The method 
used for classifi cation should be able to defi ne confi dence either in geometry or 
petrophysical properties estimates. Classes of storage sites are determined based 
on the sample’s spatial distribution and the uncertainty associated with tonnages 
calculated for a given deposit or part of it. Thus, the classifi cation of a mineral 
resource requires the defi nition of the uncertainty associated with the estimate. 
However, what is not clearly stated in the main classifi cation systems is how 
uncertainty should be assessed. 

8. DATASETS FOR CO2 STORAGE RESOURCE ASSESSMENT
Generating a model representing some geological form or body depends on 

previous georeferenced data in three dimensions. Georeferenced data is any geo-
logical data or information that has spatial coordinates X, Y and Z defi ned. These 
data can be of land surface topography, maps, drill holes or wells, geophysical 
surveys, location points of outcrops, structural measures, samples, among others. 
Therefore, the fi rst step to evaluate before starting the geological modelling is 
to check what data is available for the area of interest and if it is possible to use 
them in a 3D environment. More details about data types and methodology for an 
integrated 3D model could be seen in Kaufmann and Martin (2008). All GIS data 
presented in the fi gures 5 and 6 is public data and come from Agência Nacional do 
Petróleo, Gás Natural e Biocombustíveis, Brazil (ANP) (http://geo. anp. gov.br/) 
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and from Companhia de Pesquisa de Recursos Minerais, Brazil (CPRM) (http://
geosgb. cprm. gov.br/). 

9. AVAILABLE DATA FOR PARANÁ BASIN
The Paraná Basin presents CO๗ storage potential to be investigated in almost 

all types of CO๗ geological storage: saline aquifers and coal seams (Rio Bonito 
Formation), shales (Irati Formation), and basalts (Serra Geral Formation). Some 
of these geological environments already had some preliminary work. The saline 
aquifers hosted in Rio Bonito Formation were initially focused, and experimental 
studies suggested that CO๗ could be permanently stored as carbonates due to good 
reaction with host rocks (Ketzer et al. 2009; Lima et al. 2011). The Rio Bonito 
Formation also presents depth and thicknesses compatible with storage approxi-
mately CO๗ stationary sources (Rockett et al. 2011; Machado et al. 2013). The CO๗ 
sorption capacities were initially assessed on coals from the Rio Bonito Formation 
and oil shales from Irati Formation with potential for storage and coalbed methane 
production (Weniger et al. 2010; Kalkreuth et al. 2013; Santarosa et al. 2013). The 
Irati Formation shales were addressed on CO๗ storage investigations considering 
a possible shared production of methane (Mabecua et al. 2019; Richardson and 
Tassinari 2019; Rocha et al. 2020). 

The Paraná Basin presents an extensive data set with 123 hydrocarbon 
exploration well data. Petrobras Company carried out this survey from the 1950s 
until the 2000s, with more than 61,100 line kilometres of 2D refl ection seismic 
data covering most of its extension (Fig. 5), and local electromagnetic, magnetic, 
and gamma surveys, as well as geological maps in regional scale. These data 
allow the interpretation of the main layers of interest of Irati and Rio Bonito 
Formations, delimiting units and facies within these formations, and evaluating 
depths, thickness, distance from protected groundwater. These were used to 
interpret structures and traps for storage, allowing further capacity calculations 
and economic evaluations using 3D geological models. 

10. AVAILABLE DATA FOR SANTOS BASIN
The potential for CO๗ storage in the Santos Basin is verifi ed, especially 

from the study of the oil and gas fi elds in its extension, which is justifi ed by the 
less accessible nature of off shore basins. The reuse of oilfi eld infrastructures 
and the geological knowledge associated with these enterprises favours that the 
optimal environment for storage is the natural structure of the oil reservoirs. 
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Therefore, the use of depleted fi elds for storage in the Santos Basin seems a 
natural path because it results in lower costs, less environmental damage, and 
more excellent local geological knowledge (Hannis et al., 2017). The Santos Basin 
has eight exploratory plays in its extension, and throughout its territory, there is 
robust coverage of seismic surveys. Therefore, when associated with oil reservoirs, 
the target formations for storage in the Santos Basin are those that correspond to 
the reservoir rocks: Marambaia Formation, Santos Formation, Juréia Formation, 
Itajaí-Açu Formation, Guarujá Formation, Florianópolis Formation, Itanhaém 
Formation (Freitas et al. 2006; Moreira et al. 2007; Chang et al. 2008). Turbiditic 
sandstones of the Upper Cretaceous are the focus for CO๗ storage. The pre-salt 
reservoir formations are not considered because their very high depths diverge 
from the optimum characteristics for CO๗ storage. An initial CO๗ storage evaluation 
on Santos Basin considered the Merluza zone indicating geological favorability 
and the presence of installed infrastructure that can be reused after adaptations 
(Ciotta and Tassinari 2020). Another potential that could be explored in Santos 
Basin is the anthropic excavation of salt caverns in ultra-deepwater (da Costa et 
al. 2019a; da Costa et al. 2019b; Goulart et al. 2020). The selection of a cluster 
of salt domes for the location of the fi rst experimental and pilot caverns built-in 
ultra-deepwater was based on interpretation of 3D seismic and 2D seismic from 
one of the major pre-salt oil fi elds in Santos Basin (Goulart et al. 2020). 

The basin has 27 oil fi elds, fi ve non-associated gas fi elds, and eight fi elds 
under evaluation. The data collection resulting from the Santos basin’s exploratory 
eff orts includes 435 exploratory wells, a dense mesh of seismic data, and 3D 
seismic surveys that cover a large part of the basin (Fig. 6). The availability of 
this data allows an in-depth study of the viability of the Santos Basin fi elds for 
storage. Thus, it is possible to verify the essential characteristics of a CO๗ sink (e. 
g., depth, thickness, integrity) and the verifi cation of the long-term permanence of 
the gas from the verifi cation of the adjacent formations. The availability of these 
data also enables the production of reservoir models, favouring understanding the 
fl uid dynamics at the sites of interest and a scale prediction of storage capacity. 

11. FINAL CONSIDERATIONS
The chapter brings a brief review of some applied examples of 3D geological 

modelling in geosciences in the last years, focusing on CO๗ geological storage. 
International CO๗ storage resource assessment methodologies are presented and 
discussed, in the stages, when the 3D modelling could be useful and expected results. 
Since all assessment methodologies proposed to the current use volumetric-based 
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CO๗ storage estimates, the site characterization phase is when the 3D modelling is 
presented to be used for the volume and posterior capacity calculation. However, 
there are still few examples in the literature. Nevertheless, there is an excellent variety 
of 3D modelling applications in the Exploration phase, such as thickness models 
for the reservoir formation and the depth seal rock, favourable depth models, and 
distance models for protected aquifers. The 3D ambient could also help integrate 
distinguishing data from the surface, seismic and other geophysical surveys, wells, 
and derived data, helping select favourable areas or sites. 

 Fig. 1. Comparison between diff erent 3D geological modelling techniques for an example of 
the contact between sedimentary layers. A) Explicit modelling, B) Implicit modelling, C) 

Probabilistic modelling
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Fig. 2. A) Example of data integration of topography surface, interpreted seismic sections, and 
exploration well data in a 3D environment. B) 3D stratigraphic model generated from the data 

together.
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Fig. 3. CO๗ geologic storage classifi cation system (after Goodman et al. 2011)
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 Fig. 4. Techno-economic resource pyramid for capacity for CO๗ geological storage (after 
Bachu et al. 2007).
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 Fig. 5. Available data of seismic and exploration wells for Paraná Basin (data from ANP, 
2021)
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Fig. 6. Available data of seismic and exploration wells for Santos Basin (data from ANP, 2021) 
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Criterion Eliminatory or un-
favourable

Preferred or Favou-
rable

References

Reservoir-seal 
pairs; an extensive 
and competent bar-
rier to vertical fl ow

Poor, discontinuous, 
faulted and/or breached

-

Intermediate and exce-
llent; many pairs (mul-

ti-layered system)

Vertically sealing 
faults, multi-layered 

systems

IEA-GHG, 2009

Miocic et al., 2016

Stratigraphy Complex lateral varia-
tion and complex con-

nectivity

Uniform Smith et al., 2011

Located within fold 
belts

Yes No IEA-GHG, 2009

Depth < 800 m or > 2,500 m

< 750-800 m

< 800 m > 2,500m

-

Between 1,000 and 
2,500 m

> 800 m

> 800 m < 2,500 m

> 1,200 m

Chadwick et al. 2008

IEA-GHG, 2(IEA-
-GHG 2009)009

Smith et al., 2011

Miocic et al., 2016

Thickness < 20 m

< 20 m

> 50 m

≥ 20 m

Chadwick et al. 2008

IEA-GHG, 2009

Aff ecting protected 
groundwater qua-

lity

Yes No IEA-GHG, 2009

Faulting and fractu-
ring intensity

Extensive Small or no faults

Limited to moderate

Minimal faulting, with 
a trapping structure

Chadwick et al. 2008

IEA-GHG, 2009

Smith et al., 2011

Caprock thickness < 20 m

< 10 m

< 20 m thick

-

> 100 m

≥ 10 m

> 100 m thick

> 150m

Chadwick et al. 2008

IEA-GHG, 2009

Smith et al., 2011

Miocic et al., 2016

Lateral continuity 
of caprock

Lateral variations 
faulted

Unfaulted (uniform) Chadwick et al. 2008

Total storage capa-
city

Total capacity is esti-
mated to be similar to 
or less than the total 

amount produced from 

the CO๗ source

Total capacity is es-
timated to be much 
larger than the total 

amount produced from 

the CO๗

Chadwick et al. 2008

Table 1. Compilation of site selection criteria for geological CO2 storage where 3D geological 
modelling could be applied.
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