CAPÍTULO 11

DETERMINAÇÃO DE K₀ E Q₀ PARA AS REAÇÕES ⁷⁴Se(n, γ) ⁷⁵Se, ¹¹³In(n, γ) ^{114M}In, ¹⁸⁶W(n, γ) ¹⁸⁷W E ¹⁹¹Ir(n, γ) ¹⁹²Ir

Lívia F. Barros, Mauro da S. Dias, Marina F. Koskinas

Centro do Reator de Pesquisas – IPEN-CNEN/SP Av. Professor Lineu Prestes, 2242 05508-000 São Paulo – SP lfbarros@ipen.br

RESUMO

Este trabalho teve o intuito de contribuir para a melhoria na qualidade dos valores de k_0 e Q_0 para as reações ⁷⁴Se(n, γ)⁷⁵Se, ¹¹³In(n, γ)^{114m}In, ¹⁸⁶W(n, γ)¹⁸⁷W e ¹⁹¹Ir(n, γ)¹⁹²Ir. As medições das amostras irradiadas no reator IEA-R1 e das fontes padrão da Agência Internacional de Energia Atômica (IAEA, do inglês International Atomic Energy Agency) foram realizadas por espectrometria gama de alta resolução em detector de HPGe. A fim de investigar melhor as eficiências nos intervalos de energia em que não havia pontos experimentais, foi aplicado o *Método de Monte Carlo*. As contribuições originais deste trabalho foram: a análise de covariância associada ao *Método dos Mínimos Quadrados*, que foi utilizada para o tratamento adequado das incertezas para as reações ⁷⁴Se(n, γ)¹⁸⁷W e ¹⁹¹Ir(n, γ)¹⁹²Ir estudadas neste trabalho, em que todas as incertezas

parciais envolvidas no processo foram utilizadas; a determinação experimental dos fatores de autoblindagem para nêutrons térmicos $(G_{\rm th})$ e epitérmicos $(G_{\rm e})$ utilizados nas determinações de k_0 e Q_0 para a reação ¹¹³In $(n,\gamma)^{114m}$ In e na determinação experimental do fator de autoblindagem para nêutrons epitérmicos $(G_{\rm e})$ utilizado na determinação de k_0 e Q_0 para a reação ¹⁸⁶W $(n,\gamma)^{187}$ W, que não foram observadas na literatura, além da determinação de k_0 obtida para a reação ¹⁸⁶W $(n,\gamma)^{187}$ W na energia de 625,51 keV, que também não existe na literatura recomendada. Os valores de k_0 e Q_0 obtidos para todas as reações foram comparados aos valores encontrados na literatura.

1. INTRODUÇÃO

A Análise por Ativação Neutrônica (AAN) tornou-se uma técnica analítica de alta sensibilidade, excelente precisão e exatidão, adequada para análises quantitativas multielementares dos elementos que podem estar presentes em concentrações alta, média ou até como elemento-traço, em amostras provenientes dos mais variados campos de aplicação, sem a necessidade de separação radioquímica [1].

O *Método* k_0 de AAN é uma alternativa ao *Método Comparativo* de Análise por Ativação com Nêutrons Instrumental, e elimina algumas desvantagens, como o uso de padrões. Este método faz uso de uma parametrização de conjuntos de dados nucleares experimentais ou teóricos em uma única grandeza que, por sua vez, pode ser determinada. A concentração dos elementos é calculada em relação a um elemento comparador, geralmente ouro, eliminando a necessidade de padrões. A técnica de análise por ativação com nêutrons no Método k_0 pode ser considerada "quase absoluta", em razão da sua excelente exatidão [2].

Pesquisadores de todo o mundo tem se empenhado em recalcular os parâmetros k_0 e Q_0 [3-11] no intuito de refinar a base de dados destas constantes nucleares, principalmente no que se diz respeito a dados anteriores obtidos por De Corte [12-16].

O objetivo do presente trabalho foi determinar os parâmetros $k_0 \in Q_0$ empregando-se o *Método dos Mínimos Quadrados* e a *Metodologia da Matriz de Covariância* [17] para o cálculo de incertezas, para as reações ⁷⁴Se(n, γ) ⁷⁵Se, ¹¹³In(n, γ) ^{114m}In, ¹⁸⁶W(n, γ) ¹⁸⁷W e ¹⁹¹Ir(n, γ) ¹⁹²Ir, casos de interesse por parte dos usuários de k_0 [18].

Maiores detalhes deste trabalho estão na tese da autora L. F. Barros [19] e no artigo publicado intitulado "Determination of k_0 and Q_0 for ⁷⁴Se, ¹¹³In, ¹⁸⁶W and ¹⁹¹Ir targets applying covariance analysis" [20].

2. METODOLOGIA

O parâmetro k_0 de um isótopo analisado, com referência ao comparador, é definido por [12]:

$$(k_{0,Au})_{a} = \frac{M_{Au}\Theta_{a}\sigma_{0,a}\gamma_{a}}{M_{A}\Theta_{Au}\sigma_{0,Au}\gamma_{Au}}$$
(1)

onde: M_a é a massa atômica do elemento, Θ_a é a abundância isotópica, σ_a é a secção de choque para nêutrons térmicos, γ_a é a probabilidade de emissão gama por desintegração para a transição considerada. Os subscritos "a" e "Au" correspondem à amostra (elemento de interesse) e ao ouro (comparador), respectivamente.

O parâmetro k_0 foi determinado pela média ponderada com covariância dos valores de k_0 obtidos pela *Técnica da subtração cádmica* pela Equação 2 e pela técnica que utiliza as amostras sem cobertura de cádmio pela Equação 3, para cada energia da radiação gama de cada reação estudada neste trabalho: ⁷⁴Se(n, γ)⁷⁵Se, ¹¹³In(n, γ)^{114m}In, ¹⁸⁶ $\Omega(v,\gamma)^{187}$ W e ¹⁹¹Ir(n, γ)¹⁹²Ir.

$$k_{0,i} = \frac{A_{sp,i} - \frac{(A_{sp,i})_{Cd}}{F_{Cd,i}}}{A_{sp,Au} - \frac{(A_{sp,Au})_{Cd}}{F_{Cd,Au}}} \cdot \frac{G_{th,Au}}{G_{th,i}} \cdot \frac{\varepsilon_{p,Au}}{\varepsilon_{p,i}}$$
(2)

$$k_{0,i} = \frac{A_{sp,i}}{A_{sp,Au}} \cdot \frac{G_{ih,Au} \cdot f + G_{e,Au} \cdot Q_{0,Au}(\alpha)}{G_{ih,i} \cdot f + G_{e,i} \cdot Q_{0,i}(\alpha)} \cdot \frac{\varepsilon_{p,Au}}{\varepsilon_{p,i}}$$
(3)

onde o subscrito *i* corresponde ao elemento de interesse na energia de transição considerada e Au corresponde ao ouro (comparador), respectivamente. A taxa de contagem específica $A_{sp} = (N_p / t_m . S.D.C.W)$. N_p é a área do pico de absorção total da linha gama considerada geralmente obtida por espectrometria gama com detector de HPGe (corrigida para tempo morto, fator geométrico, soma em cascata etc.); t_m é o tempo de medida; S é o fator de saturação: $S = I - exp(-\lambda t_{irr})$, com t_{irr} : tempo de irradiação; D é o fator de decaimento: $D = exp(-\lambda t_d)$ com t_d : tempo de decaimento; C é o fator de contagem: $C = [I - exp(-\lambda t_m)]/\lambda t_m$, com t_m : tempo de medida, λ é a constante de decaimento radioativo e W é a massa. F_{Cd} é o fator de cádmio, G_{th} é o fator de correção para autoblindagem para nêutrons térmicos, G_e é o fator de pico.

 $Q_{0,i}(\alpha)$ e o parâmetro $Q_{0,i}$ foram calculados a partir das Equações 4 e 5 [12]:

$$Q_{0,i}(\alpha) = \frac{F_{Cd,Au} R_{Cd,Au} - 1}{F_{Cd,i} R_{Cd,i} - 1} \cdot \frac{G_{th,i}}{G_{th,Au}} \cdot \frac{G_{e,Au}}{G_{e,i}} \cdot Q_{0,Au}(\alpha)$$

$$\tag{4}$$

$$Q_{0,i}(\alpha) = \frac{Q_{0,i} - 0,429}{(\overline{E}_{r,i})^{\alpha}} + \frac{0,429}{(2\alpha + 1) 0,55^{\alpha}}$$
(5)

onde α é o parâmetro relacionado com a distribuição de fluxo de nêutrons epitérmicos, aproximadamente dada por $1/E^{1+\alpha}$ [12]. O subscrito *i* corresponde ao elemento de interesse na energia de transição considerada e *Au* corresponde ao ouro (comparador), respectivamente.

A metodologia da matriz de covariância utilizada neste trabalho emprega para o cálculo de incertezas o uso da Matriz de Covariância [17,19,20], que é essencial para uma descrição completa das incertezas parciais envolvidas. Essa matriz contém a variância de cada um dos parâmetros e a covariância entre cada par de parâmetros.

3. PARTE EXPERIMENTAL

Foram realizados cinco grupos de irradiações, cada grupo com um par de coelhos, um com amostras sem cobertura de cádmio, outro com amostras com cobertura de cádmio e uma irradiação com o coelho com amostras de W com cobertura de cádmio, na posição de irradiação 24 A, prateleira 5 do reator IEA-R1 do IPEN/CNEN-SP, irradiando-se cada coelho por 1 hora. Os fluxos de nêutrons térmico, epitérmico e rápido, na potência de 4,5 MW, são de aproximadamente $3,6 \times 10^{13}$; $7,2 \times 10^{12}$ e $3,0 \times 10^{12}$ n cm⁻² s⁻¹, respectivamente. A abertura dos coelhos das blindagens ocorreu no dia seguinte às irradiações [19].

Fontes pontuais padrão da IAEA de ⁶⁰Co, ¹³³Ba, ¹³⁷Cs e ¹⁵²Eu foram utilizadas para construir a curva de eficiência do detector de Germânio Hiperpuro (HPGe) CANBERRA, modelo GR1520, geometria coaxial fechada de eletrodo reverso com eficiência relativa de 15% e resolução 2,0 keV para a energia de 1332,5 keV do ⁶⁰Co, utilizado no processo de medida das amostras. As eficiências também foram avaliadas pelo *Método de Monte Carlo*.

Os alvos selecionados para as irradiações foram materiais de referência certificada (fios, folhas metálicas e soluções padrão) do IRMM (Institute for Reference Materials and Measurements), do RE (Reactor Experiments), do Aldrich Chemical Company, da SPEX e da VHG Labs [19].

4. RESULTADOS E DISCUSSÃO

Os resultados de k_0 para as reações ⁷⁴Se(n, γ)⁷⁵Se, ¹¹³In(n, γ)^{114m}In, ¹⁸⁶W(n, γ)¹⁸⁷W e ¹⁹¹Ir(n, γ)¹⁹²Ir obtidos são mostrados nas Tabelas 1, 2, 3 e 4, respectivamente [19]. Nas tabelas, o número entre parênteses correspondem à incerteza nos últimos dígitos.

Tabela 1 – Resultados finais do parâmetro k_0 obtidos para a reação ⁷⁴Se(n, γ) ⁷⁵Se em suas respectivas energias em comparação com os valores recomendados da literatura

Energia (keV)	k ₀ Presente trabalho	<i>k</i> ₀ De Corte <i>et</i> <i>al.</i> , 2003 ^[15]	<i>k</i> ₀ Jaćimović <i>et al.</i> , 2010 ^[21]	Diferença Relativa de k ₀ de Jaćimović e De Corte (%)	Diferença Relativa de k_0 do Presente trabalho e De Corte (%)	Diferença Relativa de k_0 do Presente trabalho e Jaćimović (%)
121,12	2,15(5)×10 ⁻³	1,94(1)×10 ⁻³	2,19(3)×10 ⁻³	12,9	10,8	-1,8
136,00	7,55 (24)×10 ⁻³	6,76(7) ×10 ⁻³	7,14(14) ×10 ⁻³	5,6	11,7	5,7
264,66	7,65(11)×10 ⁻³	7,11(5) ×10 ⁻³	7,57(14) ×10 ⁻³	6,5	7,6	1,1
279,54	3,31(5)×10 ⁻³	3,00(4) ×10 ⁻³	3,19(12) ×10 ⁻³	6,3	10,3	3,8

Os resultados finais de k_0 obtidos neste trabalho para a reação ⁷⁴Se(n, γ)⁷⁵Se nas energias 121,12; 136,0; 264,66 e 279,54 keV concordam dentro das incertezas com o valor de Jaćimović e colegas [21].

Tabela 2 – Resultados finais do parâmetro k_0 obtidos para a reação ¹¹³In(n, γ)^{114m}In em suas respectivas energias em comparação com os valores recomendados da literatura

Energia (keV)	k ₀ Presente trabalho	<i>k</i> ₀ De Corte <i>et</i> <i>al.</i> , 2003[15]	k ₀ Arboccò <i>et</i> <i>al.</i> , 2014 [7]	Diferença Relativa de $k_0 de$ Arboccò e De Corte (%)	Diferença Relativa de k_0 do Presente trabalho e De Corte (%)	Diferença Relativa de k ₀ do Presente trabalho e Arboccò (%)
190,3	1,019(12)×10 ⁻³	1,06(1) ×10 ⁻³	1,02(1)×10 ⁻³	-3,8	-3,9	-0,1
558,4	2,724(35)×10 ⁻⁴	2,86(2) ×10 ⁻⁴	2,70(3) ×10 ⁻⁴	-5,6	-4,8	0,9
725,2	2,721(35)×10 ⁻⁴	2,90(2) ×10 ⁻⁴	2,70(3) ×10 ⁻⁴	-6,9	-6,2	0,8

Os resultados finais de k_0 para a reação ¹¹³In(n, γ)^{114m}In nas energias de 190,3; 558,4 e 725,2 keV estão de acordo com os valores da literatura de Arboccò e colegas [7] considerando-se as incertezas.

Energia (keV)	<i>k</i> ₀ Presente trabalho	<i>k</i> ₀ De Corte <i>et al.</i> , 2003[15]	Diferença Relativa de k ₀ do Presente trabalho e De Corte (%)
479,53	$3,22(7) \times 10^{-2}$	$2,97(3) \times 10^{-2}$	8,4
551,53	$7,32(15) \times 10^{-3}$	6,91(3) × 10 ⁻³	5,9
618,77	9,16(19) × 10 ⁻³	$8,65(4) \times 10^{-3}$	5,9
625,51	$1,583(34) \times 10^{-3}$	n.r.	-
685,77	$3,98(8) \times 10^{-2}$	$3,71(2) \times 10^{-2}$	7,2
772,89	$5,99(12) \times 10^{-3}$	$5,61(4) \times 10^{-3}$	6,7

Tabela 3 – Resultados finais do parâmetro k_0 obtidos para a reação ¹⁸⁶W(n, γ)¹⁸⁷W em suas respectivas energias em comparação com os valores recomendados da literatura

n.r.: não reportado na literatura

Os resultados finais de k_0 obtidos para a reação ¹⁸⁶W(n, γ)¹⁸⁷W nas energias de 479,53; 551,53;618,77; 685,77 e 772,89 keV não concordam dentro das incertezas com os valores da literatura de De Corte e colegas [15]. O resultado final de k_0 obtido para a reação ¹⁸⁶W(n, γ)¹⁸⁷W na energia de 625,51 keV determinado neste trabalho não existe na literatura recomendada, portanto é uma contribuição original do presente trabalho.

ção com os	
em comparae	
as energias (
as respectiv	
$(\gamma)^{192}$ Ir em su	a literatura
ção ¹⁹¹ Ir(n	endados d
os para a read	lores recome
k_0 obtid	Va
lo parâmetro	
los finais d	
- Resultad	
Tabela 4	

Diferença Relativa de Chilian SCK•CEN e Stopic (%)	1,8	1,9	0,8	0,1
Diferença Relativa de Chilian <i>Polytecnique</i> e Stopic (%)	3,6	3,7	3,0	3,3
Diferença Relativa de <i>k0</i> do Presente trabalho e Stopic (%)	5,6	3,4	5,4	6,2
Diferença Relativa de Chilian SCK•CEN e Chilian Polytechnique (%)	-1,7	-1,7	$^{-2,1}$	-3,1
Diferença Relativa de <i>k0</i> do Presente trabalho e Chilian SCK•CEN (%)	3,7	1,5	4,5	6,2
Diferença Relativa de <i>k0</i> do Presente trabalho e Chilian <i>Polytechnique</i> (%)	1,9	-0.3	2,3	2,8
k0 Stopic <i>et</i> al., 2014[5]	1,11(2)	1,148(20)	3,203(50)	1,849(30)
<i>k0</i> Chilian <i>et al.</i> , 2014 (SCK• CEN) [4]	1,13(2)	1,17(2)	3,23(4)	1,85(2)
k0 Chilian et al., 2014 (Polytechnique) [4]	1,15(2)	1,19(2)	3,30(4)	1.91(2)
<i>k0</i> Presente trabalho	1,172(12)	1,187(12)	3,376(35)	1,964(20)
Energia (keV)	295,96	308,46	316,51	468,07

Os resultados finais de k_0 para a reação ¹⁹¹Ir(n, γ)¹⁹²Ir nas energias de 295,96 e 316,51 keV concordam com os valores de Chilian e colegas [4] considerando-se as incertezas.

Os resultados de Q_0 para as reações ⁷⁴Se(n, γ)⁷⁵Se, ¹¹³In(n, γ)^{114m}In,¹⁸⁶W(n, γ)¹⁸⁷W e ¹⁹¹Ir(n, γ)¹⁹²Ir obtidos são mostrados nas Tabelas 5, 6, 7 e 8, respectivamente [19]. Nas tabelas, o número entre parênteses corresponde à incerteza nos últimos dígitos.

ra	
Ξ	
ra!	
ē	
Ē	
а	
q	
SC	
ų.	
la	
ŭ	
e	
ä	
ŏ	
re Le	
Ś	
e	
2	
<u>'a</u>	
-	
õ	
ц	
01	
õ	
<u>0</u>	
ç,	
ra	
ja:	
đ	
on	
ŏ	
Я	
e	
e O	
ŝ	
<u> </u>	
-î	
'n,	
Se(n,	
⁷⁴ Se(n,	
o ⁷⁴ Se(n,	
ção ⁷⁴ Se(n,	
ação ⁷⁴ Se(n,	
reação ⁷⁴ Se(n,	
a reação ⁷⁴ Se(n,	
a a reação ⁷⁴ Se(n,	
ara a reação ⁷⁴ Se(n,	
para a reação ⁷⁴ Se(n,	
lo para a reação ⁷⁴ Se(n,	
ido para a reação ⁷⁴ Se(n,	
btido para a reação ⁷⁴ Se(n,	
obtido para a reação 74 Se(n,	
${\mathcal Y}_0$ obtido para a reação ${}^{74}{ m Se(n)}$	
) ${\cal Q}_0$ obtido para a reação $^{74}{ m Se(n)}$	
ro ${\cal Q}_0$ obtido para a reação $^{74}{ m Se(n,}$	
etro ${\cal Q}_{0}$ obtido para a reação 74 Se(n,	
metro ${\cal Q}_0$ obtido para a reação $^{74}{ m Se(n)}$	
:âmetro \mathcal{Q}_0 obtido para a reação 74 Se(n,	
arâmetro \mathcal{Q}_0 obtido para a reação 74 Se(n,	
parâmetro ${\cal Q}_0$ obtido para a reação 74Se(n,	
lo parâmetro \mathcal{Q}_0 obtido para a reação 74 Se(n,	
l do parâmetro \mathcal{Q}_0 obtido para a reação ⁷⁴ Se(n,	
ıal do parâmetro \mathcal{Q}_0 obtido para a reação $^{74} ext{Se}(extbf{n})$	
final do parâmetro \mathcal{Q}_0 obtido para a reação $^{74} m Se(n,$	
o final do parâmetro \mathcal{Q}_0 obtido para a reação $^{74} m Se(n,$	
do final do parâmetro \mathcal{Q}_0 obtido para a reação $^{74} m Se(n,$	
tado final do parâmetro \mathcal{Q}_0 obtido para a reação $^{74}\mathrm{Se(n)}$	
ultado final do parâmetro \mathcal{Q}_0 obtido para a reação $^{74} ext{Se}(ext{n})$	
csultado final do parâmetro \mathcal{Q}_0 obtido para a reação $^{74} m Se(n,$	
Resultado final do parâmetro \mathcal{Q}_0 obtido para a reação $^{74} m Se(n,$	
– Resultado final do parâmetro \mathcal{Q}_0 obtido para a reação $^{74} ext{Se}(ext{n},$	
5 – Resultado final do parâmetro \mathcal{Q}_0 obtido para a reação 74 Se(n,	
a 5 – Resultado final do parâmetro \mathcal{Q}_0 obtido para a reação $^{74} m Se(n,$	
ela 5 – Resultado final do parâmetro \mathcal{Q}_0 obtido para a reação $^{74} m Se(n,$	
bela 5 – Resultado final do parâmetro \mathcal{Q}_0 obtido para a reação 74 Se(n,	
abela 5 – Resultado final do parâmetro \mathcal{Q}_0 obtido para a reação 74 Se(n,	

Diferença Relativa de Mughabghab e De Corte (%)	2,2
Diferença Relativa de Jaćimović e De Corte (%)	-9,2
Diferença Relativa do Presente trabalho e Mughabghab (%)	-6,5
Diferença Relativa do Presente trabalho e Jaćimović (%)	5,2
Diferença Relativa do Presente trabalho e De Corte (%)	-4,4
Q0 Mughabghab <i>et al.</i> , 2003[22]	11,034(452)
<i>Q0</i> Jaćimović <i>et al.</i> , 2010[21]	9,81(10)
<i>Q0</i> De Corte <i>et al.</i> , 2003 [15]	10,8(7)
Q0 Presente trabalho	10,32(30)

O resultado final de Q_0 para a reação ⁷⁴Se(n, γ)⁷⁵Se concorda com os valores da literatura apresentada de De Corte e colegas [15] e Mughabghab [22] considerando-se as incertezas e discorda dentro das incertezas do valor de Q_0 de Jaćimović e colegas [21].

Tabela 6 – Resultado final do parâmetro Q_0 obtido para a reação 113 In(n, γ)^{114m}In emcomparação com os valores recomendados da literatura

<i>Q0</i> Presente trabalho	<i>Q0</i> De Corte <i>et al.</i> , 2003 [15]	<i>Q0</i> Arboccò <i>et al.</i> , 2014[7]	<i>Q0</i> Mughabghab <i>et al.</i> , 2003 [22]	Diferença Relativa do Presente trabalho e De Corte (%)	Diferença Relativa do Presente trabalho e Arboccò (%)	Diferença Relativa do Presente trabalho e Mughabghab (%)	Diferença Relativa de Arboccò e De Corte (%)	Diferença Relativa de Mughabghab e De Corte (%)
24,7(7)	24,2(4)	23,7(5)	27,15(330)	2,1	34,2	-9,0	-2,1	12,19

O resultado final de Q_0 para a reação ¹¹³In(n, γ)^{114m}In concorda com a literatura apresentada de De Corte e colegas [15], Mughabghab [22] e Arboccò e colegas [7] considerando-se as incertezas.

Tabela 7 – Resultado final do parâmetro Q_0 obtido para a reação 186 W(n, γ) 187 W em comparaçãocom os valores recomendados da literatura

Q ₀ Presente trabalho	Q ₀ De Corte <i>et al.</i> , 2003 [15]	<i>Q</i> ₀ Mughabghab <i>et al.</i> , 2003 [22]	Diferença Relativa do Presente trabalho e De Corte (%)	Diferença Relativa do Presente trabalho e Mughabghab (%)	Diferença Relativa de Mughabghab e De Corte (%)
13,0 (6)	13,7(2)	12,6(4)	-5,1	3,2	-8,0

O resultado final de Q_0 para a reação ¹⁸⁶W(n, γ)¹⁸⁷W concorda com a literatura apresentada de De Corte e colegas [15] e Mughabghab [22] considerando-se as incertezas.

Tabela 8 – Resultado final do parâmetro Q_0 obtido para a reação 191 Ir(n, γ) 192 Ir em comparaçãocom os valores recomendados da literatura

Q ₀ Presente trabalho	Q ₀ Chilian <i>et al.</i> , 2014 (<i>Polytechnique</i>) [4]	Q ₀ Chilian <i>et al.</i> , 2014 (SCK• CEN) [4]	Diferença Relativa do Presente trabalho e Chilian (<i>Polytechnique</i>) (%)	Diferença Relativa do Presente trabalho e Chilian (SCK• CEN) (%)	Diferença Relativa de Chilian (<i>Polytechnique</i>) e Chilian (SCK• CEN) (%)
3,20(10)	3,94(20)	3,47(10)	-18,8	-7,8	13,5

O resultado final de Q_0 obtido para a reação ¹⁹¹Ir(n, γ)¹⁹²Ir está em desacordo com a literatura de Chilian (*Polytechnique*) [4] e Chilian (SCK•CEN) [4] considerando-se as incertezas. As matrizes de correlação obtidas neste trabalho podem ser consultadas na tese da autora L. F. Barros [19].

5. CONCLUSÕES

Neste trabalho foram realizadas as determinações experimentais de k_0 e Q_0 para as reações ⁷⁴Se(n, γ) ⁷⁵Se, ¹¹³In(n, γ) ^{114m}In, ¹⁸⁶W(n, γ) ¹⁸⁷W e ¹⁹¹Ir(n, γ) ¹⁹²Ir. As incertezas associadas aos parâmetros k_0 e Q_0 para estas reações foram avaliadas com análise de covariância associada ao *Método dos Mínimos Quadrados*; este foi um dos aspectos inéditos deste trabalho que proporcionou um tratamento rigoroso das incertezas associadas aos parâmetros k_0 e Q_0 para estas reações. Por meio deste método estatístico rigoroso todas as incertezas parciais envolvidas no processo foram utilizadas.

A maioria dos valores de k_0 e Q_0 para as reações ⁷⁴Se(n, γ) ⁷⁵Se, ¹¹³In(n, γ) ^{114m}In, ¹⁸⁶W(n, γ) ¹⁸⁷W e ¹⁹¹Ir(n, γ) ¹⁹²Ir determinados neste trabalho teve concordância com os valores apresentados da literatura. O objetivo do presente trabalho de contribuir para a melhoria na qualidade dos valores de k_0 e Q_0 para as reações ⁷⁴Se(n, γ) ⁷⁵Se, ¹¹³In(n, γ) ^{114m}In, ¹⁸⁶W(n, γ) ¹⁸⁷W e ¹⁹¹Ir(n, γ) ¹⁹²Ir foi atingido.

AGRADECIMENTOS

Os autores agradecem ao Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP) pela oportunidade do doutorado da autora L. F. Barros bem como ao CRPq (Centro do Reator de Pesquisas) e ao LMN (Laboratório de Metrologia Nuclear) do IPEN pelo uso das instalações.

A autora L. F. Barros agradece à CNEN (Comissão Nacional de Energia Nuclear) pela bolsa de estudos recebida em seu doutorado para a realização deste trabalho.

REFERÊNCIAS

1. ZAMBONI, C. B. *et al. Fundamentos de f*ísica de *n*êutrons. São Paulo: Editora Livraria da Física, 2007.

2. De Corte, F. The standardization of standardless NAA. Journal of Radioanalytical and Nuclear Chemistry, v. 248, p. 13-20, 2001.

3. SNEYERS, L.; VERMAERCKE, P. Determination of Q_0 and k_0 factors for 75Se. Journal of Radioanalytical and Nuclear Chemistry, v. 300, n. 1, p. 599-604, 2014.

4. CHILIAN, C.; SNEYERS, L.; KENNEDY, G. Measurement of k_0 and Q_0 values for iridium isotopes. *Journal of Radioanalytical and Nuclear Chemistry*, v. 300, n. 1, p. 609-613, 2014.

5. STOPIC, A.; BENNETT, J. W. Measurement of k_0 values for caesium and iridium. *Journal of Radioanalytical and Nuclear Chemistry*, v. 300, n. 1, p. 593-597, 2014.

6. JAĆIMOVIĆ, R. et al. The 2012 recommended k_0 database. Journal of Radioanalytical and Nuclear Chemistry, v. 300, n. 1, p. 589-592, 2014.

7. ARBOCCOÒ, F. F. *et al.* Experimental determination of k_0 , Q_0 factors, effective resonance energies and neutron cross-sections for 37 isotopes of interest in NAA. *Journal of Radioanalytical and Nuclear Chemistry*, v. 300, n. 1, p. 655-772, 2014.

8. ARBOCCOÒ, F. F. *et al.* Experimental determination of Q_0 factors and effective resonance energies with a multi-channel approach: The α -vector method. *Journal of Radioanalytical and Nuclear Chemistry*, v. 302, n. 1, p. 631-646, 2014.

9. ARBOCCOÒ, F. F. *et al.* Experimental determination of k_0 , Q_0 , E_r factors and neutron cross-sections for 41 isotopes of interest in Neutron Activation Analysis. *Journal of Radioanalytical and Nuclear Chemistry*, v. 296, n. 2, p. 931-938, 2013.

10. LIN, X. *et al.* Determination of k_0 -values for the reactions 94 Zr(n, γ) 95 Zr and 96 Zr (n, γ) 97 Zr- 97m Nb by irradiation in highly thermalized neutron flux. *Applied Radiation and Isotopes*, v. 67, n. 12, p. 2092-2096, 2009.

11. LIN, X.; HENKELMANN, R.; ALBER, D. Is there something wrong in the barium determination by k0-INAA? *Journal of Radioanalytical and Nuclear Chemistry*, v. 271, n. 1, p. 71-76, 2007.

12. DE CORTE, F. *The* k_0 -*standardization method*: a move to the optimisation of Neutron Activation Analysis. 1986. 464 p. Tese (Doutorado) – Ryksuniversiteit Gent, Faculteit Van de Wetenschappen, Bélgica.

13. DE CORTE, F.; SIMONITS, A.; DE WISPELAERE, A.; ELEK, A. J. k_0 –measurements and related nuclear data compilation for (n,g) reactor Neutron Activation Analysis. *Journal of Radioanalytical and Nuclear Chemistry*, v. 133, n. 1, p. 3-41, 1989.

14. DE CORTE, F. *et al.* Recent advances in the k_0 -standardization of Neutron Activation Analysis: 118 extensions, applications, prospects. *Journal of Radioanalytical and Nuclear Chemistry*, v. 169, n. 1, p. 125-158, 1993.

15. DE CORTE, F.; SIMONITS, A. Recommended nuclear data for use in the k_0 standardization of neutron activation analysis. *Atom. Nucl. Data.* v. 85, n. 1, p. 47-67, 2003.

16. DE CORTE, F. *et al.* k_0 – measurements and related nuclear data compilation for (n,g) reactor Neutron Activation Analysis. *Journal of Radioanalytical and Nuclear Chemistry*, v. 133, n. 1, p. 43-130, 1989.

17.HELENE, O. *Método dos m*ínimos *quadrados com formalismo matricial*. São Paulo: Editora Livraria da Física, 2006.

18. k_0 INTERNATIONAL SCIENTIFIC COMMITTEE. k_0 -neutron activation users. 2019. Disponível em: http://www.kayzero.com/k0naa/k0naaorg/k0-ISC. html.

19. BARROS, L. F. *Determinação de* $k_0 e Q_0$ *para as reações* ⁷⁴Se(n, γ) ⁷⁵Se, ¹¹³In(n, γ) ^{114m}In, ¹⁸⁶W(n, γ) ¹⁸⁷W E ¹⁹¹Ir(n, γ) ¹⁹²Ir. 2018. 165 p. Tese (Doutorado em Tecnologia Nuclear) – Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN),Universidade de São Paulo (USP), São Paulo. Disponível em: http:// www.teses.usp.br/teses/disponiveis/85/85131/tde-21092018-143710/pt-br.php. DOI: 10.11606/T.85.2018.tde-21092018-143710.

20. BARROS, L. F. *et al.* Determination of k_0 and Q_0 for ⁷⁴Se, ¹¹³In, ¹⁸⁶W and ¹⁹¹Ir targets applying covariance analysis. *Applied Radiation and Isotopes*, v. 154, 2019. Disponível em: https://doi.org/10.1016/j.apradiso.2019.108846.

21. JAĆIMOVIĆ, R.; STIBILJ, V. Determination of Q_0 and k_0 factors for ⁷⁵Se and their validation using a known mass of Se on cellulose. *Nuclear Instruments and Methods in Physics Research A*, v. 622, p. 415-418, 2010.

22. MUGHABGHAB, S. F. *Thermal neutron capture cross sections resonance integrals and g-factors*. INDC(NDS)-440, International Nuclear Data Committee, 2003.