5

Investigação experimental em modelos

Para aferir a formulação proposta neste trabalho para o cálculo da frequência do primeiro modo de vibração, desenvolvida no capítulo 4, foram desenvolvidos ensaios dinâmicos em laboratório utilizando modelos de barras. A investigação foi realizada nas dependências do Gabinete de Dinâmica Não-Linear de Estruturas da Escola Politécnica da USP.

Dois conjuntos de testes foram conduzidos visando aferir a proposta para o cálculo da frequência e avaliar a influência da rigidez geométrica na frequência de vibração dos sistemas estruturais em balanço. O primeiro grupo estava submetido, além do seu peso próprio, a uma força normal aplicada na extremidade. O segundo grupo estava sujeito exclusivamente ao seu peso próprio.

Para acompanhar os cálculos analíticos e os resultados experimentais, foram feitas duas análises numéricas por meio do Método dos Elementos Finitos (MEF) utilizando o programa SAP2000. A primeira foi realizada sob condições lineares (MEFL) e a segunda sob as condições de não-linearidade geométrica (MEFNL), essa última processada com base nos resultados provenientes de uma análise estática não-linear. Essa análise pode ser realizada com objetivos comparativos, pois é possível especificar no programa SAP2000 para que se utilize do processo de cálculo que leva em consideração o efeito da força normal sobre a rigidez do sistema. Nos dois casos, as análises foram feitas por autovalores.

Para o segundo grupo de testes, acrescentou-se à análise dinâmica, a análise estática da carga crítica de flambagem, pela formulação numérica de autovalores e pela solução de Euler-Greenhill.

Nas análises numéricas, os parâmetros empregados foram os referidos nos itens relativos aos corpos-de-prova, tendo sido lançadas nos modelos numéricos as características do material, geometrias e massas dos modelos físicos.

As análises numéricas e analíticas, mencionadas anteriormente, foram descritas no capítulo 3.

5.1 INSTRUMENTOS E SISTEMAS EMPREGADOS

Os instrumentos, entre eles os equipamentos eletrônicos, utilizados foram: extensômetros elétricos; acelerômetros piezoelétricos; sistema de aquisição de dados ADS-2000, com placa conversora AI-2161 e placa controladora AC-2122VA, e programas AqDados e AqDAnalysis para aquisição e análise de dados, da LYNX informática; microcomputador; pré-amplificadores para o sinal dos acelerômetros; calibrador manual de acelerômetro; paquímetro; régua metálica; balança eletrônica; grampos metálicos; nível de bolha com base magnética e trena metálica.

5.2 CARACTERÍSTICAS DOS SENSORES

Foram utilizados extensômetros elétricos de resistência de 120 Ω e fator 2,1; fabricados pela Excel Sensores (Excel Sensores, 2006). O arranjo adotado para a ligação dos extensômetros ao sistema de aquisição de dados foi de ¹/₄ de ponte a três fios.

Foram também utilizados acelerômetros do tipo piezoelétricos. Os acelerômetros piezoelétricos foram de fabricação Bruel & Kjaer modelos 4393 e 4371, cujas características, respectivamente, são: sensibilidade - 3,1 pC/g e 10 pC/g, intervalo de frequência - 0,1 Hz à 16.500 Hz e 0,1 Hz à 12.600 Hz, frequência de ressonância – 55 kHz e 42 kHz, nível de ruído residual – 0,52 g e 0,24 g, nível operacional máximo – 5000 g e 6000 g, massa 2,4 gramas e 11 gramas (BRUEL & KJAER, 2005). Os acelerômetros foram calibrados usando um calibrador excitador manual da Bruel & Kjaer tipo 4294.

A ligação dos acelerômetros ao sistema de aquisição de dados foi precedida da ligação do acelerômetro ao amplificador modelo 2525 da própria Bruel & Kjaer (SERRIGDE & LICHT, 1995).

5.3 O SISTEMA DE AQUISIÇÃO DE DADOS

O sistema de aquisição automático de dados empregado foi o ADS-2000 (AqDados) com placa conversora AI-2161 e placa controladora AC-2122VA, da LYNX informática, de 16 bits de resolução, cuja interface com microcomputador é feita através de rede Ethernet, (AqDados 7.02, 2003). A ligação dos sensores ao sistema de aquisição de dados é feita por meio dos conectores de entrada, que estão localizados na parte traseira do equipamento e obedeceram às seguintes configurações:

- extensômetros: $\frac{1}{4}$ de ponte a 120 Ω com 3 fios, ganho 2000, tensão de excitação de 5 volts;
- acelerômetros: tensão diferencial, ganho 1.

Durante a aquisição dos sinais foram usados filtros passa baixa de 20 Hz para os ensaios de maior frequência e 5 Hz para os demais.

Inicialmente usou-se uma taxa de amostragem de 1000 Hz para prospectar o experimento. Como as frequências mais elevadas ficaram abaixo de 10 Hz, optou-se por baixar a frequência de aquisição para 100 Hz, em alguns casos a aquisição foi feita a uma frequência de 500 Hz. Os pré-amplificadores 2525 foram ajustados conforme a sensibilidade de cada acelerômetro.

5.4 ESQUEMA ESTRUTURAL

O esquema estrutural adotado para os ensaios foi o de uma barra engastada em uma extremidade e livre na outra, conforme visto na Figura 4.1.

5.5 CORPOS-DE-PROVA

O corpo-de-prova (CP) do primeiro grupo de testes era constituído por uma barra metálica chata de seção nominal de 1/2" (12,70 mm) por 1/8" (3,17 mm) ao qual foram fixadas, por pressão lateral, duas massas metálica na extremidade livre, que somadas às massas dos acelerômetros e suas bases magnéticas resultaram no valor total de 1,595 gramas no topo da haste.

Por ser uma peça de aço, o módulo de elasticidade longitudinal do material foi assumido como sendo de 205 GPa. A determinação da densidade do material da haste foi feita experimentalmente no laboratório de materiais do PCC/USP usando a técnica de picnometria com gás Helio. A densidade relativa obtida foi de 8,19 (8190 kg/m³), conforme se vê no Anexo A. As demais massas envolvidas foram medidas na balança eletrônica do laboratório de materiais da USP.

O corpo-de-prova foi instrumentado com três extensômetros e dois acelerômetros, conforme a disposição mostrada na Figura 5.1. Os extensômetros foram colados à superfície da barra, enquanto que os acelerômetros ficaram aderidos a essa por meio de bases magnéticas que fazem parte do seu estojo de acessórios.

Figura 5.1 – Instrumentação do corpo-de-prova – medidas em centímetros.

O corpo-de-prova do segundo grupo ensaiado era constituído por um tubo metálico de diâmetro externo nominal de 3/8" (9,525 mm) e espessura da parede de 1,2 mm. Para esse corpo-de-prova, o módulo de elasticidade longitudinal do material foi também assumido como sendo de 205 GPa. Para esses ensaios, o corpo-de-prova foi instrumentado com o acelerômetro modelo 4371 fabricado pela Bruel & Kjaer. Os ensaios do segundo grupo foram realizados apenas para a força normal de compressão devida ao peso próprio dos modelos.

5.6 DESCRIÇÃO DOS ENSAIOS

Com as massas metálicas adicionadas à haste foram adotadas três posições de ensaio para o primeiro grupo de testes, relativas às possíveis influências da carga axial na rigidez no sistema. A primeira posição considerou a influência da força axial de compressão, logo, posicionou-se o conjunto de forma ser comprimido pelo peso próprio da barra e pela carga vertical produzida pela massa no topo. A segunda posição considerou a influência da força axial de tração, de forma que o conjunto foi posicionado de maneira a gerar força de tração no sistema e o corpo-de-prova foi posto na posição inversa à anterior. A terceira posição analisou a ausência da influência da carga axial na frequência fundamental do modelo, por essa razão, o conjunto foi instalado na posição horizontal. Um quarto ensaio considerou exclusivamente a compressão devido ao peso próprio da barra e será descrito mais adiante. A Figura 5.2 ilustra as posições empregadas nos testes do primeiro grupo.

(c) ausência do esforço normal

Figura 5.2 – Posições adotadas nos ensaios.

A realização dos ensaios obedeceu aos passos descritos a seguir. Antes do inicio dos ensaios, os acelerômetros foram calibrados com o calibrador excitador B&K modelo 4294 (Bruel & Kjaer, 2005). Os acelerômetros ficaram aderidos ao corpo-de-prova por meio das bases magnéticas com a disposição mostrada na Figura 5.3.

Figura 5.3 – Detalhe da fixação dos acelerômetros no CP.

Após serem fixados, tanto o aparelho de apoio quanto os modelos foram nivelados horizontal e verticalmente com nível de bolha (Figura 5.4).

Figura 5.4 – Nivelamento dos corpos-de-prova.

O corpo-de-prova foi fixado ao aparelho de apoio por meio de grampos metálicos conhecidos comumente como grampos tipo sargento. Buscou-se manter o mesmo padrão de fixação para todos os modelos, como o tamanho e a posição dos grampos em relação aos CP e a pressão de aperto. O comprimento experimental de referência foi controlado visualmente e a sua determinação foi feita por meio de uma trena metálica. As mesmas referências foram mantidas para as diferentes posições. Variou-se o comprimento de 5 cm em 5 cm até o limite físico de fixação possível ou até a posição de máxima estabilidade oferecida pelo conjunto. A Figura 5.5 mostra o sistema de fixação empregado nos ensaios e as referências para controle do comprimento dos corpos-de-prova.

Figura 5.5 – Controle do comprimento dos modelos.

Os corpos-de-prova do grupo que estava submetido exclusivamente ao peso próprio foram fixados a um pórtico metálico por meio de uma base e uma placa metálica que permitia a mudança do comprimento ao aliviar-se a pressão exercida pelos parafusos. Buscou-se manter o mesmo padrão de aperto na fixação da barra com os diversos comprimentos adotados.

Antes de serem excitados os modelos eram verticalmente nivelados, operação que se tornava mais difícil à medida o comprimento dos modelos aumentava. O conjunto de apoio conferia uma condição inercial segura para a realização dos ensaios.

A Figura 5.6 mostra o sistema de apoio e fixação utilizado e a verificação da verticalidade dos corpos-de-prova.

Figura 5.6 – Sistema de fixação e nivelamento do CP – Ensaios com o tubo metálico.

Em todos os ensaios, os cabos dos acelerômetros foram fixados ao sistema de apoio com fita adesiva para evitar interferência na aquisição dos sinais.

Em ambos os ensaios, os modelos, nas diversas posições e comprimentos, foram excitados por uma força aleatória com magnitude necessária e suficiente para por o sistema em movimento oscilatório. Depois de excitados, os sistemas oscilavam em torno da sua posição inicial.

Os sinais, no domínio do tempo, foram então gravados e analisados posteriormente.

5.7 ANÁLISE DOS RESULTADOS

Como afirma Lobo Carneiro (1993), as vibrações livres, excitadas inicialmente a partir de um deslocamento inicial, são amortecidas por efeito histérico, por atritos, ou pela resistência de um meio viscoso. A taxa de amortecimento é uma constante física característica do material do corpo e/ou do meio que o cerca, proporcional à dissipação de energia por ciclo ou ao decréscimo relativo da amplitude de vibração.

Quanto se refere ao decréscimo da amplitude de vibração, Lobo Carneiro (1996) recomenda que o amortecimento crítico seja calculado pela Eq. (5.1).

$$\zeta = \frac{1}{2\pi} \cdot (\text{decréscimo relativo da amplitude por ciclo}).$$
(5.1)

No caso de pequenas amplitudes, tanto a experiência quanto as soluções teóricas mostram que a influência do deslocamento inicial em relação ao comprimento do corpo é desprezível e que também a influência do amortecimento sobre o período de vibração pode, em geral, ser desprezado. O amortecimento relativo medido nos ensaios por decremento logarítmico de duas amplitudes consecutivas para o corpo-de-prova em compressão com 50 cm de altura foi de 0,00724 (0,724%), corroborando as afirmações de Lobo Carneiro (1993).

É interessante mencionar que nos ensaios de compressão e sem a consideração da influência do esforço normal, os modelos mais longos apresentaram uma configuração inicial de equilíbrio estático bastante deformada em relação à posição reta do eixo da barra, chegando mesmo a ocorrer a plastificação localizada em alguns modelos. A Figura 5.7 ilustra a plastificação mencionada para o comprimento de 90 cm.

 $(L_{exp} = comprimento experimental de referência)$

Figura 5.7 – Plastificação do material.

A situação descrita anteriormente está fora do escopo deste trabalho. No entanto, por tratar-se de atividades de prospecção, optou-se por conduzir os ensaios até onde fosse possível sua a realização. A condição relatada anteriormente representa um caso de vibração a partir da configuração inicial deformada, sendo necessário, portanto, considerar que devido à grande deformação da peça, a força F inicialmente alinhada ou perpendicular ao eixo da barra, produz uma componente axial N e gera uma força tangencial V que variam ao longo do comprimento em função da seção considerada, conforme se vê na Figura 5.8.

Figura 5.8 – Componentes normal e tangencial devido à curvatura acentuada da barra.

A obtenção da frequência do modo fundamental de vibração dos modelos foi feita pela transformada de Fourier no programa AqDAnalysis 7 (AqDAnalysis 7, 2004). Para isso, a análise de auto-espectro disponibilizada pelo programa foi configurada para uma janela de compensação do tipo *Hanning*, com uma janela de dados para o cálculo do espectro médio; zoom da FFT (Transformada Rápida de Fourier) igual a 1; e com a máxima resolução permitida para a quantidade de amostras aquisitadas. A resposta apresentada pelos modelos representa o movimento harmônico, conforme se vê na Figura 5.9, que exemplifica os sinais dos sensores no domínio do tempo e a transformada de Fourier correspondente ao acelerômetro B&K 4371.

(a) No domínio do tempo.

(b) No domínio da freqüência.

Figura 5.9 – Resposta dinâmica experimental.

O comprimento máximo alcançado no ensaio de compressão foi de 85 cm, além do qual, o sistema não mais se manteve em equilíbrio. Os resultados dos ensaios serão discutidos mais adiante.

No que se refere às análises pelo Método dos Elementos Finitos, é oportuno salientar que:

 às frequências obtidas sob a hipótese de comportamento linear independem da natureza do esforço, pois não levam em conta a mudança na rigidez geométrica dos modelos, e, portanto, podem ser comparadas com os resultados experimentais e com os da solução proposta neste trabalho para o esforço de compressão;

• a análise dinâmica não-linear esteve baseada na matriz de rigidez de uma prévia análise estática não-linear como descrito no início deste capítulo.

Para os modelos do primeiro grupo de testes, os resultados obtidos na análise dinâmica não-linear pelo Método dos Elementos Finitos foram os seguintes:

A	nálise não-linear	- Frequências (Hz)
Comprimento (m)	Compressão	Tração	Sem esforço axial
0,20	6,2810	6,5146	6,3989
0,25	4,4405	4,7022	4,5733
0,30	3,3281	3,6155	3,4749
0,35	2,5940	2,9053	2,7543
0,40	2,0783	2,4121	2,2517
0,45	1,6983	2,0536	1,8848
0,50	1,4077	1,7839	1,6073
0,55	1,1783	1,5751	1,3915
0,60	0,9925	1,4096	1,2198
0,65	0,8383	1,2760	1,0805
0,70	0,7073	1,1664	0,9657
0,75	0,5936	1,0751	0,8698
0,80	0,4924	0,9981	0,7886
0,85	0,3994	0,9325	0,7192
0,90	0,3104	0,8760	0,6593

Tabela 5.1 – Resultados da análise não-linear por Elementos Finitos.

Graficamente tem-se o comportamento apresentado na Figura 5.10.

Figura 5.10 – Análise não-linear pelo Método dos Elementos Finitos.

As análises numéricas com a inclusão da não-lineridade geométrica forneceram três diferentes resultados para a frequência de vibração dos modelos. Esses resultados revelam influência que a natureza do esforço normal produz na frequência de vibração dos modelos, tornam-se, para esses sistemas, mais evidente à medida que aumenta a esbeltez dos modelos e diminui a frequência de vibração.

Os resultados obtidos pela análise dinâmica dos modelos nãolineares pelo Método dos Elementos Finitos foram comparados aos resultados experimentais e aos da solução proposta para o cálculo da frequência, desenvolvida no capítulo 4, e serão apresentados no decorrer deste capítulo.

5.7.1 Análise dos ensaios para o esforço de compressão

As diferenças percentuais entre os valores experimentais e a solução de referência, Eq. (4.19), ficaram em torno de 3,17% nos

comprimentos iniciais, passando para 5,98% ao ser alcançado o comprimento de 70 cm. A partir desse instante já se percebia uma configuração estática de equilíbrio acentuadamente deformada, e a plastificação do material já se manifestava perceptível.

A média das diferenças entre o total dos resultados experimentais e a solução proposta neste trabalho foi de 8,69%. Os resultados obtidos no ensaio de compressão estão dispostos na Tabela 5.2 com os correspondentes resultados da solução proposta neste trabalho, dados pela Eq. (4.19).

	Esforço de	compressão		
Ormania	Frequência	ıs (Hz)	Difer	enças
(m)	Resultados experimentais	Solução proposta	Hz	%
0,20	6,3477	6,3276	0,020	0,32
0,25	4,4556	4,4729	-0,017	0,39
0,30	3,2959	3,3520	-0,056	1,67
0,35	2,5024	2,6122	-0,110	4,20
0,40	1,9836	2,0925	-0,109	5,20
0,45	1,6479	1,7096	-0,062	3,61
0,50	1,3428	1,4167	-0,074	5,21

Tabela 5.2 – Esforço de compressão: resultados experimentais e solução proposta.

	Esforço de	compressão	·	
Comprimente	Frequência	is (Hz)	Difer	enças
(m)	Resultados experimentais	Solução proposta	Hz	%
0,55	1,1292	1,1855	-0,056	4,75
0,60	0,9155	0,9983	-0,083	8,29
0,65	0,7935	0,8429	-0,049	5,86
0,70	0,6104	0,7110	-0,101	14,15
0,75	0,4883	0,5965	-0,108	18,14
0,80	0,3662	0,4946	-0,128	25,95
0,85	0,3052	0,4011	-0,096	23,90

As respostas do ensaio de compressão revelaram o comportamento presente na Figura 5.11, na qual é possível ver que os resultados obtidos pela solução analítica do método proposto, Eq. (4.19), ajustam-se bem aos resultados experimentais.

Portanto, é possível afirmar, com os ensaios realizados, que dentro do intervalo de validade da equação (4.19), até o comprimento de 65 cm, os resultados experimentais confirmam o correto cálculo da frequência propiciado pela solução desenvolvida neste trabalho.

Figura 5.11 – Compressão: Resultados experimentais e solução proposta.

As frequências obtidas pelo Método dos Elementos Finitos, sob a hipótese de comportamento linear, são apresentadas na Tabela 5.3.

Tabela 5.3 – Comparativo dos resultados da análise linear pelo Método dos Elementos Finitos.

	Frequênc	ias (Hz)	
Comprimento (m)	Elementos Finitos Linear	Resultados experimentais	Solução proposta
0,20	6,3989	6,3477	6,3276
0,25	4,5733	4,4556	4,4729
0,30	3,4749	3,2959	3,3520

	Frequênc	ias (Hz)	
Comprimento (m)	Elementos Finitos Linear	Resultados experimentais	Solução proposta
0,35	2,7543	2,5024	2,6122
0,40	2,2517	1,9836	2,0925
0,45	1,8848	1,6479	1,7096
0,50	1,6073	1,3428	1,4167
0,55	1,3915	1,1292	1,1855
0,60	1,2198	0,9155	0,9983
0,65	1,0805	0,7935	0,8429
0,70	0,9657	0,6104	0,7110
0,75	0,8698	0,4883	0,5965
0,80	0,7886	0,3662	0,4946
0,85	0,7192	0,3052	0,4011

Graficamente tem-se:

Figura 5.12 – Análise linear por elementos finitos, experimental e proposto.

Quando comparados aos resultados da formulação proposta e aos valores experimentais, para o esforço de compressão, situação em que, na prática, se encontram as estruturas civis em estudo, a análise linear apresenta diferenças importantes nas primeiras frequências.

As diferenças da análise linear pelo Método dos Elementos Finitos entre os valores experimentais e os da solução proposta podem ser encontradas na Tabela 5.4.

	Esfor	rço de compressã	0	
Comprimento	Com resultado	os experimentais	Com a solu	ição proposta
(m)	Hz	%	Hz	%
0,20	0,0512	0,80	0,0713	1,11
0,25	0,1177	2,57	0,1004	2,20
0,30	0,1790	5,15	0,1230	3,54

Tabela 5.4 – Diferenças da análise linear pelo Método	dos
Elementos Finitos.	

	Esfor	rço de compressã	0	
Comprimento	Com resultados experimentais		Com a solu	ição proposta
(m)	Hz	%	Hz	%
0,35	0,2519	9,15	0,1421	5,16
0,40	0,2681	11,90	0,1592	7,07
0,45	0,2369	12,57	0,1752	9,30
0,50	0,2645	16,46	0,1907	11,86
0,55	0,2623	18,85	0,2060	14,80
0,60	0,3043	24,95	0,2215	18,16
0,65	0,2870	26,56	0,2377	21,99
0,70	0,3553	36,79	0,2547	26,38
0,75	0,3815	43,86	0,2733	31,42
0,80	0,4224	53,56	0,2940	37,28
0,85	0,4140	57,56	0,3181	44,23

Quando comparada aos resultados experimentais, a análise linear pelo Método dos Elementos Finitos alcança um máximo de 57,56%. Para o mesmo intervalo de validade considerado para a validade da Eq. (4.19), essa diferença se aproxima de 13%.

Para melhor comparar os resultados obtidos, na Tabela 5.5 são novamente apresentadas frequências da análise não-linear pelo Método dos Elementos Finitos, para o esforço de compressão.

Tabela 5.5 – Resultados da análise não-linear pelo MEF para o esforço de compressão.

Análise não-linear - Fre	quências (Hz)
Comprimento (m)	Compressão
0,20	6,2810
0,25	4,4405
0,30	3,3281
0,35	2,5940
0,40	2,0783
0,45	1,6983
0,50	1,4077
0,55	1,1783
0,60	0,9925
0,65	0,8383
0,70	0,7073
0,75	0,5936
0,80	0,4924
0,85	0,3994
0,90	0,3104

No gráfico da Figura 5.13 são mostradas as frequências dos modelos não-lineares obtidas pelo Método dos Elementos Finitos, juntamente com os respectivos valores experimentais e analíticos da solução proposta.

Na Figura 5.13, é possível ver a boa aproximação entre as curvas dos três resultados: não-linear pelo MEF, experimental e proposto, confirmando o caráter não-linear do problema e a validade da solução desenvolvida neste trabalho.

As diferenças existentes entre a análise não-linear por Elementos Finitos, com a análise linear, com a solução proposta e com os resultados experimentais são apresentadas na Tabela 5.6.

Em termos absolutos há uma significativa diferença entre a análise não-linear e a análise linear pelo Método dos Elementos Finitos, quando a primeira é superada em 0,4088 Hz. Em termos relativos, essa diferença representa um percentual de 44,46%.

Figura 5.13 – Compressão: elementos finitos não-linear, experimental e proposto.

Tabela 5.6 – Compressão - Diferenças percentuais da análise não-linear pelo MEF.

Comprimento (m)	Com linear pelo MEF	Com experimental	Com proposto
0,20	1,88	1,05	0,74
0,25	2,90	0,34	0,72
0,30	4,22	0,98	0,71
0,35	5,82	3,66	0,70
0,40	7,70	4,77	0,68
0,45	9,89	3,06	0,66
0,50	12,42	4,83	0,63
0,55	15,32	4,35	0,61
0,60	18,64	8,41	0,58
0,65	22,42	5,64	0,55
0,70	26,76	15,88	0,51
0,75	31,75	21,57	0,48
0,80	37,56	34,46	0,44
0,85	44,46	30,88	0,40

Em situação contrária à descrita anteriormente, os resultados da análise não-linear pelo MEF guardam desprezível diferença relativa com os resultados obtidos pela solução proposta. Nas análises realizadas pelo MEF, os resultados obtidos, tanto nos modelos lineares quanto nos modelos não-lineares, obedeceram à discretização mais densa presente na Tabela 5.7, na qual podem ser encontradas as diferenças de resultados para modelos com diferentes discretizações.

Para avaliar a influência que a técnica de discretização dos modelos pelo Método dos Elementos Finitos exerce sobra a frequências de vibração, foram processadas modelagens contendo 1, 10, 40, 100, 500 e 1000 elementos. A simulação foi realizada para o esforço de compressão e os resultados estão na Tabela 5.7. A Tabela 5.8 apresen-

ta as diferenças entre as diferentes discretizações.

1890,8900 1893,6120 1893,6540 1893,6600 1893,6610 modo ° S 909,5326 909,5239 909,5313 909,5326 909,2101 Frequência (Hz) - Não-linear opou **4**° 804,6195 804,6178 804,5923 804,6192 804,6195 opom å i 801,9095 281,1122 281,1394 281,1397 281,1397 281,1381 modo ° S 6,2810 6,2439 6,2810 6,2810 6,2804 6,2809 modo 10 1894,4190 891,6470 1894,3700 1894,4120 1894,4190 modo ° S i 909,9312 910,2446 910,2530 910,2517 910,2529 modo **4** Frequência (Hz) - Linear ī 804,5923 804,6178 804,6192 804,6195 804,6195 modo ŝ i 801,9095 281,7408 281,7658 281,7669 281,7672 281,7672 modo 20 6,3989 6,3645 6,3989 6,3986 6,3989 modo 6,3989 10 1000 500 100 °ы 10 40 <u>____</u> 0,20 ц Э

Tabela 5.7 – Avaliação da discretização na frequência dos modelos.

-			Freq	luência (Hz)	- Linear			Frequê	encia (Hz) - I	Vão-linear	
ے (E	2 H	1° modo	2° modo	3° modo	4° modo	5° modo	1° modo	2° modo	3° modo	4° modo	5° modo
	.	4,5427	715,4379	1	1	I	4,4061	715,4379	I	I	I
·	10	4,5730	180,4822	582,9681	718,4142	1212,8010	4,4399	179,8497	582,2433	718,4142	1212,0410
ц С	40	4,5733	180,5006	583,1643	718,4425	1214,4400	4,4404	1 79,8693	582,4404	718,4425	1213,6790
	100	4,5733	180,5015	583,1687	718,4441	1214,4610	4,4405	179,8704	582,4451	718,4441	1213,7000
	500	4,5733	180,5017	583,1694	718,4444	1214,4640	4,4405	179,8707	582,4459	718,4444	1213,7030
	1 000	4,5733	180,5017	583, 1694	718,4444	1214,4650	4,4405	179,8707	582,4460	718,4444	1213,7040

Alexandre de Macêdo Wahrhaft

	5° modo	I	842,3037	843,4075	843,4207	843,4228	843,4229
Vão-linear	4° modo	1	654,6964	654,7272	654,7290	654,7293	654,7293
ência (Hz) - №	3° modo	I	404,3766	404,5154	404,5188	404,5195	404,5196
Frequé	2° modo	651,4610	124,7964	124,8125	124,8135	124,8138	124,8138
	1° modo	3,2953	3,3274	3,3280	3,3281	3,3281	3,3281
	5° modo	I	843,0675	844,1722	844,1851	844,1871	844,1871
- Linear	4° modo	I	654,6964	654,7272	654,7290	654,7293	654,7293
quência (Hz)	3° modo	ı	405,1051	405,2427	405,2458	405,2463	405,2464
Free	2° modo	651,4610	125,4328	125,4475	125,4483	125,4484	125,4484
	1° modo	3,4472	3,4747	3,4749	3,4749	3,4749	3,4749
0 IN	z H	-	10	40	100	500	1000
-	l (ii				000		

-	OIN		Freq	luência (Hz)	- Linear			Frequê	encia (Hz) - I	Vão-linear	
L (II)	Z H	1° modo	2° modo	3° modo	4° modo	5° modo	1° modo	2° modo	3° modo	4° modo	5° modo
	1	2,7287	601,6274	I	1	I	2,5620	601,6274	I	1	1
	10	2,7540	92,2202	297,7684	605,0954	619,7915	2,5932	91,5796	297,0362	605,0954	619,0239
л С	40	2,7543	92,2324	297,8720	605,1284	620,5921	2,5939	91,5935	297,1412	605,1284	619,8239
0,30	100	2,7543	92,2330	297,8745	605,1303	620,6011	2,5940	91,5944	297,1440	605,1303	619,8332
	500	2,7543	92,2331	297,8749	605,1306	620,6024	2,5940	91,5947	297,1446	605,1306	619,8348
	1000	2,7543	92,2331	297,8749	605,1306	620,6024	2,5940	91,5948	297,1447	605,1306	619,8348

Alexandre de Macêdo Wahrhaft

	5° modo	1	565,0497	565,0849	565,0868	565,0872	565,0872
Vão-linear	4° modo	1	473,9664	474,5763	474,5834	474,5846	474,5847
ència (Hz) - I	3° modo	I	227,3275	227,4110	227,4135	227,4140	227,4141
Frequé	2° modo	561,3706	70,0086	70,0210	70,0219	70,0222	70,0223
	1° modo	2,0465	2,0773	2,0781	2,0782	2,0783	2,0783
	5° modo	I	565,0498	565,0849	565,0868	565,0872	565,0872
- Linear	4° modo	I	474,7380	475,3481	475,3548	475,3558	475,3558
quência (Hz)	3° modo	I	228,0637	228,1455	228,1475	228,1479	228,1479
Free	2° modo	561,3706	70,6534	70,6639	70,6644	70,6645	70,6645
	1° modo	2,2279	2,2514	2,2516	2,2517	2,2517	2,2517
CIN		~	10	40	100	500	1 000
-	ן ש (ב)			0	0,40		

-			Freq	uência (Hz)	- Linear			Frequê	ncia (Hz) - I	Vão-linear	
ے د		1° modo	2° modo	3° modo	4° modo	5° modo	1° modo	2° modo	3° modo	4° modo	5° modo
	-	1,8625	527,9549	1	1	1	1,6662	527,9548	I	1	I
	10	1,8845	55,8611	180,2550	375,2252	531,8276	1,6972	55,2119	179,5148	374,4496	531,8276
	40	1,8847	55,8702	180,3219	375,7075	531,8646	1,6981	55,2232	179,5837	374,9320	531,8646
0,40	100	1,8848	55,8707	180,3236	375,7128	531,8666	1,6982	55,2241	179,5859	374,9378	531,8666
	500	1,8848	55,8708	180,3239	375,7136	531,8670	1,6983	55,2245	179,5865	374,9389	531,8670
	1000	1,8848	55,8708	180,3239	375,7137	531,8670	1,6983	55,2245	179,5865	374,9389	531,8670

Alexandre	de	Macêdo	Wahr	rhaftig
-----------	----	--------	------	---------

-			Freq	luência (Hz)	- Linear			Frequê	incia (Hz) - I	Vão-linear	
ן ב	2 H	1° modo	2° modo	3° modo	4° modo	5° modo	1° modo	2° modo	3° modo	4° modo	5° modo
	. 	1,5863	499,6279	I	1	I	1,3748	499,6279	I	I	I
	10	1,6071	45,2760	146,0470	304,0110	503,6794	1,4064	44,6224	145,3028	303,2314	503,6793
C Li	40	1,6073	45,2842	146,1032	304,4033	503,7181	1,4074	44,6330	145,3613	303,6240	503,7181
0,50	100	1,6073	45,2846	146,1047	304,4077	503,7202	1,4076	44,6339	145,3633	303,6289	503,7202
	500	1,6073	45,2847	146,1050	304,4083	503,7206	1,4077	44,6342	145,3639	303,6299	503,7206
	1 000	1,6073	45,2847	146,1050	304,4084	503,7206	1,4077	44,6342	145,3639	303,6300	503,7206

		Freq	luência (Hz)	- Linear			Frequê	encia (Hz) - I	Vão-linear	
	1° modo	2° modo	3° modo	4° modo	5° modo	1° modo	2° modo	3° modo	4° modo	5° modo
~	1,3716	475,2085	I	1	I	1,1442	475,2083	I	1	1
10	1,3914	37,4414	120,7306	251,3022	428,2002	1,1769	36,7832	119,9823	250,5184	427,4023
40	1,3915	37,4488	120,7788	251,6283	429,9461	1,1780	36,7932	120,0330	250,8452	429,1427
100	1,3915	37,4491	120,7801	251,6321	429,9567	1,1782	36,7941	120,0350	250,8496	429,1540
500	1,3915	37,4492	120,7803	251,6326	429,9581	1,1783	36,7945	120,0355	250,8505	429,1557
 1000	1,3915	37,4492	120,7803	251,6327	429,9581	1,1783	36,7945	120,0356	250,8506	429,1557

Alexandre de Macêdo Wahrhaft

	5° modo	1	359,0811	360,5422	360,5518	360,5533	360,5534
Vão-linear	4° modo	1	210,4140	210,6910	210,6950	210,6959	210,6959
ência (Hz) - №	3° modo	I	100,7189	100,7637	100,7655	100,7661	100,7661
Frequé	2° modo	453,8676	30,8175	30,8271	30,8280	30,8284	30,8285
	1° modo	0,9566	0,9908	0,9921	0,9924	0,9925	0,9925
	5° modo	I	359,8831	361,3494	361,3584	361,3595	361,3595
- Linear	4° modo	I	211,2019	211,4780	211,4813	211,4818	211,4818
quência (Hz)	3° modo	ı	101,4713	101,5133	101,5145	101,5147	101,5147
Free	2° modo	453,8676	31,4805	31,4871	31,4875	31,4875	31,4875
	1° modo	1,2008	1,2196	1,2198	1,2198	1,2198	1,2198
0 N	z H	-	10	40	100	500	1 000
-	- (m				no'n		

-	OIN		Freq	uência (Hz)	- Linear			Frequê	encia (Hz) - l	Vão-linear	
ے د	Z U	1° modo	2° modo	3° modo	4° modo	5° modo	1° modo	2° modo	3° modo	4° modo	5° modo
	1	1,0624	435,0032	I	1	I	0,8000	435,0040	I	1	1
	10	1,0804	26,8399	86,4803	179,9876	306,6992	0,8363	26,1720	85,7237	179,1955	305,8930
LL C	40	1,0805	26,8460	86,5173	180,2248	307,9492	0,8378	26,1813	85,7638	179,4340	307,1380
60 0	100	1,0805	26,8463	86,5184	180,2277	307,9568	0,8381	26,1823	85,7656	179,4376	307,1464
	500	1,0805	26,8463	86,5186	180,2282	307,9578	0,8383	26,1827	85,7662	179,4385	307,1478
	1000	1,0805	26,8463	86,5186	180,2282	307,9578	0,8383	26,1827	85,7662	179,4386	307,1479

Alexandre de Macêdo Wahrhaft

	5° modo	1	263,6780	264,7524	264,7599	264,7612	264,7613
Jão-linear	4° modo		154,4192	154,6272	154,6306	154,6315	154,6315
ència (Hz) - N	3° modo	1	73,8225	73,8589	73,8607	73,8613	73,8614
Frequê	2° modo	418,1666	22,4836	22,4927	22,4937	22,4941	22,4942
	1° modo	0,6659	0,7050	0,7068	0,7072	0,7073	0,7073
	5° modo	I	264,4885	265,5675	265,5742	265,5750	265,5750
- Linear	4° modo	I	155,2155	155,4219	155,4246	155,4250	155,4250
quência (Hz)	3° modo	ı	74,5834	74,6164	74,6174	74,6176	74,6176
Free	2° modo	418,1667	23,1565	23,1621	23,1624	23,1624	23,1624
	1° modo	0,9483	0,9656	0,9657	0,9657	0,9657	0,9657
ON	z H	-	10	40	100	500	1 000
-	- Ê				0, ,0		

-			Freq	uência (Hz)	- Linear			Frequê	incia (Hz) - M	Vão-linear	
(m)	2 H	1° modo	2° modo	3° modo	4° modo	5° modo	1° modo	2° modo	3° modo	4° modo	5° modo
	. 	0,8530	403,0163	I	I	I	0,5479	403,0150	I	I	1
	10	0,8696	20,1839	64,9841	135,2276	230,4278	0,5909	19,5059	64,2189	134,4271	229,6132
Ц 7 С	40	0,8697	20,1891	65,0139	135,4092	231,3693	0,5930	19,5148	64,2524	134,6105	230,5503
G / 'D	100	0,8698	20,1894	65,0148	135,4116	231,3752	0,5934	19,5159	64,2541	134,6137	230,5571
	500	0,8698	20,1894	65,0150	135,4119	231,3760	0,5936	19,5163	64,2548	134,6146	230,5584
	1 000	0,8698	20,1894	65,0150	135,4119	231,3760	0,5936	19,5164	64,2548	134,6146	230,5584
Alexandre de M	acêdo Wahrhaftig										
----------------	------------------										
----------------	------------------										

	5° modo	I	201,7279	202,5530	202,5593	202,5605	202,5605
Vão-linear	4° modo	1	118,0621	118,2253	118,2284	118,2293	118,2293
ência (Hz) - N	3° modo	ı	56,3571	56,3882	56,3899	56,3906	56,3906
Frequé	2° modo	389,2883	17,0669	17,0758	17,0769	17,0774	17,0774
	1° modo	0,4406	0,4891	0,4916	0,4921	0,4924	0,4924
	5° modo	I	202,5468	203,3760	203,3813	203,3820	203,3820
- Linear	4° modo	I	118,8668	119,0280	119,0302	119,0305	119,0305
uência (Hz)	3° modo	ı	57,1267	57,1537	57,1546	57,1548	57,1548
Free	2° modo	389,2850	17,7503	17,7552	17,7554	17,7555	17,7555
	1° modo	0,7725	0,7884	0,7886	0,7886	0,7886	0,7886
ON	z H	-	10	40	100	500	1000
-	- Ê				n, au		

-			Freq	uência (Hz)	- Linear			Frequê	ncia (Hz) - I	Vão-linear	
ן ב		1° modo	2° modo	3° modo	4° modo	5° modo	1° modo	2° modo	3° modo	4° modo	5° modo
	1	0,7037	376,7627	1	I	I	0,3383	376,7616	I	1	1
	10	0,7190	15,7327	50,6138	105,3058	179,4363	0,3955	15,0438	49,8398	104,4968	178,6131
	40	0,7192	15,7373	50,6385	105,4501	180,1725	0,3985	15,0527	49,8688	104,6434	179,3456
0,00	100	0,7192	15,7375	50,6394	105,4521	180,1773	0,3991	15,0538	49,8706	104,6464	179,3513
	500	0,7192	15,7376	50,6395	105,4524	180,1779	0,3994	15,0543	49,8712	104,6472	179,3525
	1 0 0 0	0,7192	15,7376	50,6395	105,4524	180,1780	0,3994	15,0544	49,8713	104,6473	179,3526

Frequência (Hz) - Não-linear	1°2°3°4°5°modomodomodomodomodo	0,2323 365,2584	0,3053 13,3469 44,3768 93,1271 159,2396	0,3092 13,3558 44,4041 93,2597 159,8944	0,3099 13,3569 44,4059 93,2626 159,8998	0,3103 13,3575 44,4065 93,2635 159,9010	0,3104 13,3575 44,4066 93,2635 159,9011	
	5° modo	I	160,0670	160,7254	160,7298	160,7303	160,7304	
- Linear	4° modo	1	93,9404	94,0704	94,0723	94,0726	94,0726	
quência (Hz)	3° modo	1	45,1552	45,1780	45,1788	45,1789	45,1789	
Free	2° modo	365,2798	14,0414	14,0457	14,0460	14,0460	14,0460	
	1° modo	0,6443	0,6592	0,6593	0,6593	0,6593	0,6593	
0 N	2 H	~	10	40	100	500	1000	
-	ן ב				0 n n			

 $(N^{\circ} EF = Número de Elementos Finitos)$

modelos.
dos
ição
discretize
ື
Com
ncia
uêr
frequ
da
 Diferenças
ŵ
ы. С
Tabela

			Difere	nças (%) -	Linear			Diferenç	ças (%) - Nã	o-linear	
L (m)	N° EF	1° modo	2° modo	3° modo	4° modo	5° modo	1° modo	2° modo	3° modo	4° modo	5° modo
	-	0,54	-184,60	I	1	1	0,59	-185,24	1	I	I
	10	0,01	0,01	0,00	0,04	0,15	0,01	0,01	0,00	0,04	0,15
	40	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,20	100	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	500	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	1 000	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

	5° modo	1	0,14	0,00	0,00	0,00	0,00
io-linear	4° modo	1	00'0	00'0	00'0	00'0	00'0
ças (%) - Nâ	3° modo	I	0,03	00'0	00'0	00'0	00'0
Diferen	2° modo	-297,75	0,01	00'0	00'0	00'0	00'0
	1° modo	0,77	0,01	00'0	00'0	00'0	00'0
	5° modo	1	0,14	0,00	0,00	0,00	0,00
- Linear	4° modo	1	0,00	0,00	0,00	0,00	0,00
- (%) suite	3° modo	I	0,03	00'0	00'0	00'0	00'0
Difere	2° modo	-296,36	0,01	00'0	00'0	00'0	00'0
	1° modo	0,67	0,01	0,00	0,00	0,00	0,00
	N° EF		10	40	100	500	1 000
	L (m)				G7'0		

			Difere	- (%) seju	Linear			Diferenç	as (%) - Nã	o-linear	
L (m)	N° EF	1° modo	2° modo	3° modo	4° modo	5° modo	1° modo	2° modo	3° modo	4° modo	5° modo
		0,80	-419,31	I	I	I	66'0	-421,95	1	I	1
	10	0,01	0,01	0,03	0,01	0,13	0,02	0,01	0,04	0,01	0,13
	40	0,00	0,00	0,00	0,00	00'0	00'0	0,00	0,00	0,00	0,00
0,5,0	100	0,00	0,00	0,00	0,00	00'0	00'0	0,00	0,00	0,00	0,00
-	500	0,00	00'0	0,00	00'0	00'0	00'0	0,00	0,00	0,00	0,00
	1 000	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

			Difere	nças (%) -	Linear			Diferenç	cas (%) - Nã	o-linear	
L (m)	N° EF	1° modo	2° modo	3° modo	4° modo	5° modo	1° modo	2° modo	3° modo	4° modo	5° modo
		0,93	-552,29	I	I	I	1,23	-556,84	I	I	T
	10	0,01	0,01	0,04	0,01	0,13	0,03	0,02	0,04	0,01	0,13
л С	40	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00
0°5'0	100	0,00	0,00	0,00	0,00	0,00	00'0	0,00	0,00	0,00	0,00
	500	0,00	0,00	0,00	0,00	0,00	00'0	0,00	00'0	00'0	0,00
	1 000	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

	2° modo	1	0,01	0,00	0,00	00'0	0,00
áo-linear	4° modo	1	0,13	0,00	00'0	00'0	00'0
ças (%) - Nê	3° modo	1	0,04	0,00	0,00	0,00	00'0
Diferen	2° modo	-701,70	0,02	0,00	0,00	00'0	0,00
	1° modo	1,53	0,05	0,01	0,00	00'0	0,00
	5° modo	I	0,01	0,00	0,00	0,00	0,00
- Linear	4° modo	I	0,13	0,00	0,00	0,00	0,00
enças (%) -	3° modo	I	0,04	0,00	0,00	0,00	0,00
Difere	2° modo	-694,42	0,02	0,00	0,00	0,00	00'0
	1° modo	1,06	0,01	0,00	0,00	0,00	0,00
	N° EF	-	10	40	100	500	1000
	L (m)				0,40		

			Difere	nças (%) -	Linear			Diferenç	as (%) - Nã	o-linear	
L (m)	N° EF	1° modo	2° modo	3° modo	4° modo	5° modo	1° modo	2° modo	3° modo	4° modo	5° modo
	-	1,18	-844,96	I	I	I	1,89	-856,02	I	T	I
	10	0,01	0,02	0,04	0,13	0,01	0,07	0,02	0,04	0,13	0,01
L C	40	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00
C 4, O	100	0,00	0,00	0,00	0,00	00'0	00'0	0,00	0,00	0,00	0,00
	500	0,00	0,00	0,00	0,00	00'0	00'0	0,00	0,00	0,00	0,00
	1 000	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

	5° modo	1	0,01	0,00	0,00	0,00	0,00
o-linear	4° modo	I	0,13	0,00	00'0	0,00	00'0
ças (%) - Nã	3° modo	I	0,04	0,00	00'0	00'0	00'0
Diferen	2° modo	-1019,38	0,03	0,00	0,00	0,00	00'0
	1° modo	2,34	60'0	0,02	0,01	00'0	0,00
	5° modo	1	0,01	0,00	0,00	0,00	0,00
- Linear	4° modo	1	0,13	0,00	0,00	0,00	0,00
enças (%) - I	3° modo	I	0,04	0,00	0,00	0,00	0,00
Difere	2° modo	-1003,31	0,02	0,00	0,00	0,00	0,00
	1° modo	1,31	0,01	0,00	0,00	0,00	0,00
	N° EF	-	10	40	100	500	1 000
	L (m)				00,0	1	

			Difere	nças (%) -	Linear			Diferenç	as (%) - Nã	o-linear	
L (m)	N° EF	1° modo	2° modo	3° modo	4° modo	5° modo	1° modo	2° modo	3° modo	4° modo	5° modo
		1,43	-1168,94	I	I	1	2,90	-1191,52	I	I	I
	10	0,01	0,02	0,04	0,13	0,41	0,13	0,03	0,04	0,13	0,41
L L C	40	0,00	0,00	0,00	0,00	0,00	0,03	0,00	0,00	0,00	0,00
cc, D	100	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00
	500	0,00	0,00	0,00	0,00	0,00	00'0	0,00	0,00	0,00	0,00
	1 000	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

	5° modo	1	0,41	0,00	0,00	0,00	00'0
o-linear	4° modo	I	0,13	0,00	0,00	0,00	00'0
ças (%) - Nã	3° modo	I	0,05	00'0	00'0	00'0	00'0
Diference	2° modo	-1372,24	0,04	00′0	00'0	00'0	00'0
	1° modo	3,61	0,17	0,04	0,01	00'0	00'0
	5° modo	I	0,41	0,00	0,00	0,00	0,00
Linear	4° modo	1	0,13	0,00	0,00	0,00	0,00
- (%) sou	3° modo	I	0,04	0,00	0,00	0,00	0,00
Difere	2° modo	-1341,42	0,02	00'0	0,00	0,00	0,00
	1° modo	1,56	0,02	00'0	0,00	0,00	0,00
	N° EF	-	10	40	100	500	1 000
	L (m)				0,00		

	5° modo	I	0,41	0,00	0,00	0,00	0,00
ío-linear	4° modo	I	0,14	00'0	00'0	00'0	00'0
ças (%) - Nê	3° modo	1	0,05	00'0	00'0	00'0	00'0
Diferen	2° modo	-1561,42	0,04	0,01	00'0	00'0	00'0
	1° modo	4,56	0,24	0,05	0,02	00'0	00'0
	5° modo	I	0,41	0,00	0,00	0,00	0,00
Linear	4° modo	I	0,13	00'0	00'0	0,00	0,00
- (%) suite	3° modo	I	0,04	00'0	00'0	00'0	00'0
Difere	2° modo	-1520,34	0,02	0,00	0,00	0,00	00'0
	1° modo	1,68	0,02	0,00	0,00	0,00	0,00
	N° EF		10	40	100	500	1 000
	L (m)			LL C	c. 00'D		

-	Io 5° modo		4 0,41	0,00	0,00	0,00	0,00
lão-linea	4° mod	1	0,1	0'0	0'0	0'0	0'0
ças (%) - N	3° modo	1	0,05	00'0	00'0	00'00	00'0
Diferen	2° modo	-1759,00	0,05	0,01	00'0	00'0	00'0
	1° modo	5,85	0,33	0,07	0,03	0,00	00'0
	5° modo	I	0,41	0,00	0,00	0,00	00'0
Linear	4° modo	I	0,13	0,00	0,00	0,00	00'0
- (%) -	3° modo	I	0,05	0,00	0,00	00'0	00'0
Difere	2° modo	-1705,37	0,03	0,00	0,00	0,00	00'0
	1° modo	1,80	0,02	0,00	0,00	0,00	00'0
	N° EF	~	10	40	100	500	1000
	L (m)			0 1 0			

			Difere	nças (%) -	Linear			Diferenç	as (%) - Nã	o-linear	
L (m)	N° EF	1° modo	2° modo	3° modo	4° modo	5° modo	1° modo	2° modo	3° modo	4° modo	5° modo
	-	1,92	-1896,17	I	I	I	7,70	-1965,01	I	I	I
	10	0,02	0,03	0,05	0,14	0,41	0,46	0,05	0,06	0,14	0,41
	40	0,00	0,00	0,00	0,00	0,00	0,10	0,01	0,00	0,00	0,00
c / 'n	100	0,00	0,00	0,00	0,00	0,00	0,04	0,00	0,00	0,00	0,00
	500	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	1000	00'0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

			Difere	nças (%) -	Linear			Diferenç	as (%) - Nã	o-linear	
(m)	N° EF	1° modo	2° modo	3° modo	4° modo	5° modo	1° modo	2° modo	3° modo	4° modo	5° modo
	. 	2,04	-2092,48	1	I	1	10,51	-2179,55	1	T	I
	10	0,02	0,03	0,05	0,14	0,41	0,66	0,06	0,06	0,14	0,41
	40	0,00	0,00	0,00	0,00	0,00	0,15	0,01	0,00	0,00	0,00
n,au	100	0,00	0,00	0,00	0,00	0,00	0,06	0,00	0,00	0,00	0,00
	500	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00
	1 000	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

-	lo 5° modo	I	4 0,41	0,00	0,00	0,00	0,00
lão-linea	4 mod	1	0,1	0'0	0'0	0'0	0,0
ças (%) - N	3° modo	I	0,06	00'0	00'0	00'0	0,00
Diferen	2° modo	-2402,67	0,07	0,01	00'0	00'0	00'0
	1° modo	15,30	66'0	0,23	60'0	0,01	00'0
	5° modo	1	0,41	0,00	0,00	0,00	00'0
Linear	4° modo	I	0,14	0,00	0,00	0,00	0,00
- (%) -	3° modo	1	0,05	0,00	0,00	0,00	00'0
Difere	2° modo	-2294,03	0,03	0,00	0,00	0,00	00'0
	1° modo	2,16	0,02	0,00	0,00	0,00	00'0
	N° EF	~	10	40	100	500	1000
	L (m)				0,00		

- 25,16 -2634,48 0,41 1,64 0,08 0,00 0,38 0,01	Index Index Index - - 25,16 -2634,48 0,14 0,41 1,64 0,08 0,00 0,00 0,38 0,01	III000 III000 III000 III000 III000 III000 III000 III000 -2634,48 -	1000 1000 1000 1000 1000 1000 1000 25,16 2634,48 2634,48 20,08 1,64 0,08 1,64 0,08 1,64 0,08 1,64 0,08 1,64 0,08 1,64 0,08 1,64 0,08 1,64 0,08 1,64 0,08 1,64 0,08 1,64 0,08 1,64 0,08 1,64 0,08 1,64 0,08 1,64 0,08 1,64 0,08 1,64 0,08 1,64 0,08 1,64 1,64 0,08 1,64	Induct Induct Induct Induct Induct Induct 2,28 -2500,60 - - - 25,16 -2634,48 0,02 0,03 0,05 0,14 0,41 1,64 0,08 0,00 0,00 0,00 0,00 0,01 0,01 0,01
- 25,16 -2 0,41 1,64 0,00 0,38	25,16 -2 0,14 0,41 1,64 0,00 0,00 0,38	25,16 -2 0,05 0,14 0,41 1,64 0,00 0,00 0,38	-2500,60 25,16 -2 0,03 0,05 0,14 0,41 1,64 0,00 0,00 0,00 0,38	2,28 -2500,60 - - 25,16 -2 0,02 0,03 0,05 0,14 0,41 1,64 0,00 0,00 0,00 0,00 0,38
0,41 1,64 0,00 0,38	0,14 0,41 1,64 0,00 0,00 0,38	0,05 0,14 0,41 1,64 0,00 0,00 0,00 0,38	0,03 0,05 0,14 0,41 1,64 0,00 0,00 0,00 0,38	0,02 0,03 0,05 0,14 0,41 1,64 0,00 0,00 0,00 0,00 0,38
0,00 0,38	0,00 0,00 0,38	0,00 0,00 0,38	0,00 0,00 0,00 0,38	0,00 0,00 0,00 0,00 0,38
0,00 0,14	0,00 0,00 0,14	0,00 0,00 0,14	0,00 0,00 0,00 0,14	0,00 0,00 0,00 0,00 0,14
0,00 0,02	0,00 0,00 0,02	0,00 0,00 0,00 0,02	0,00 0,00 0,00 0,02	0,00 0,00 0,00 0,00 0,00
0,00	0,00	0,00 0,00 0,00	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00
	0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0000 00'0 00'0 00'0 00'0 00'0 00'0 00'

 $(N^{\circ} EF = Número de Elementos Finitos)$

Para o primeiro modo, a diferença entre a frequência do modelo mais simplesmente discretizado e o modelo mais densamente discretizado aumenta continuamente, alcançando 2,28% quando a frequência é obtida de forma linear e 25,16% quando é calculada com a não-lineraidade geométrica. É importante realizar a discretização com mais de um elemento para o cálculo da resposta da estrutura sob ação de vento, que pretendam incluir o segundo modo de vibração ou superiores, pois o segundo modo de vibração, para modelos discretizados com apenas um elemento, é um modo axial de vibração.

Quando se trata de análises não-lineares as diferenças entre as frequências do primeiro modo de vibração de modelos de discretização mais pobre para os de discretização mais rica vão se ampliando com a esbeltez.

5.7.2 Análise dos ensaios para o esforço de tração

Os resultados obtidos no ensaio de tração estão dispostos a seguir com os correspondentes da solução proposta. As respostas do ensaio de tração revelaram o comportamento apresentado no gráfico da Figura 5.14, no qual se verifica, novamente, uma boa aproximação com a solução proposta.

Tabela 5.9 – Esforço de tração: resultados experimentais e Proposto.

	Esforço de	tração		
0	Frequência	s (Hz)	Difer	enças
(m)	Resultados experimentais	Solução proposta	Hz	%
0,20	6,5430	6,5660	-0,023	0,35
0,25	4,6997	4,7400	-0,040	0,85
0,30	3,5706	3,6452	-0,075	2,05
0,35	2,8687	2,9298	-0,061	2,09
0,40	2,3804	2,4330	-0,053	2,16
0,45	1,9836	2,0721	-0,088	4,27
0,50	1,7330	1,8004	-0,067	3,74
0,55	1,5240	1,5902	-0,066	4,16
0,60	1,3430	1,4237	-0,081	5,67
0,65	1,2210	1,2892	-0,068	5,29
0,70	1,1230	1,1789	-0,056	4,74
0,75	1,0250	1,0870	-0,062	5,71
0,80	0,9770	1,0096	-0,033	3,23
0,85	0,9520	0,9437	0,008	0,88
0,90	0,8790	0,8869	-0,008	0,90

Graficamente tem-se:

Figura 5.14 – Resultados experimentais de tração e Proposto.

A média das diferenças entre os valores experimentais e a formulação desenvolvida pelo método proposto foi de 0,052 Hz. Em valores percentuais isso representa 3,07%, considerando todo o conjunto de resultados. Portanto, pelos resultados experimentais obtidos para o esforço de tração, é possível concluir pela propriedade da solução analítica, proposta neste trabalho, para o cálculo da frequência de sistemas não-lineares geométricos. Na análise numérica pelo Método dos Elementos Finitos, quando a força normal é de tração, a situação se repete. A Tabela 5.10 apresenta os resultados da análise não-linear pelo MEF.

Tabela 5.10 – Resultados da análise não-linear pelo MEF para o esforço de tração.

Análise não-linear - Freq	uências (Hz)
Comprimento (m)	Tração
0,20	6,5146
0,25	4,7022
0,30	3,6155
0,35	2,9053
0,40	2,4121
0,45	2,0536
0,50	1,7839
0,55	1,5751
0,60	1,4096
0,65	1,2760
0,70	1,1664
0,75	1,0751
0,80	0,9981
0,85	0,9325
0,90	0,8760

As curvas que representam a análise não-linear por Elementos Finitos, a da solução proposta e os resultados experimentais praticamente se sobrepõem, com o pode ser observado no gráfico da Figura 5.15.

Figura 5.15 – Tração não-linear: Elementos finitos, experimental e proposto.

Quanto às diferenças da análise não-linear, presentes na Tabela 5.11, o panorama permanece semelhante ao obtido para o esforço de compressão, com percentuais elevados entre os resultados lineares e não-lineares, pequenos percentuais entre os não-lineares e a solução proposta e praticamente inexistindo entre os resultados não-lineares e os resultados dos ensaios.

Tabela 5.11 – Tração - Diferenças percentuais da análise nãolinear pelo MEF.

Comprimento (m)	Com linear pelo MEF	Com experimental	Com proposto
0,20	1,789	1,446	-1,096
0,25	2,777	1,606	-0,752
0,30	3,973	1,775	0,291
0,35	5,373	1,951	0,149
0,40	6,962	2,139	0,033
0,45	8,735	2,336	1,982
0,50	10,681	2,544	1,229
0,55	12,794	2,759	1,432
0,60	15,061	2,984	2,747
0,65	17,475	3,217	2,117
0,70	20,026	3,457	1,294
0,75	22,704	3,705	2,035
0,80	25,503	3,958	-0,812
0,85	28,414	4,218	-5,391
0,90	31,429	4,482	-3,830

5.7.3 Análise dos ensaios para a ausência do esforço axial

Os resultados obtidos nos ensaios horizontais, i.e., sem a influência da carga axial, estão dispostos na Tabela 5.12, ao lado dos correspondentes resultados da solução analítica proposta.

A diferença média percentual para todo o grupo de resultados é de 7,30% e a diferença absoluta média entre os dois resultados é de 0,008 Hz.

	Sem esforçe	o axial		
Comprime on to	Frequências (Hz)	Difere	nças
(m)	Resultados experimentais	Solução proposta	Hz	%
0,20	6,3230	6,4479	-0,125	1,94
0,25	4,3700	4,6084	-0,238	5,17
0,30	3,4180	3,5017	-0,084	2,39
0,35	2,7100	2,7756	-0,066	2,36
0,40	2,2220	2,2691	-0,047	2,08
0,45	1,8550	1,8995	-0,044	2,34
0,50	1,6110	1,6199	-0,009	0,55
0,55	1,4160	1,4025	0,013	0,96
0,60	1,2450	1,2295	0,015	1,26

Tabela 5.12 – Sem esforço axial: resultados experimentais e proposto.

	Sem esforço	o axial		
Comprimente	Frequências (Hz)	Difere	nças
(m)	Resultados experimentais	Solução proposta	Hz	%
0,65	1,1470	1,0892	0,058	5,31
0,70	1,0500	0,9735	0,077	7,86
0,75	75 0,9770 0,8768 0,100		11,43	
0,80	0,9520	0,7950	0,157	19,75
0,85	0,8790	0,7250	0,154	21,23
0,90	0,8300	0,6647	0,165	24,86

A curva com a solução dada pela Eq. (4.19) tem a tendência de sobrepor-se à experimental, como pode ser visto no gráfico da Figura 5.16.

É importante ressaltar que, para o comprimento igual a 70 cm e superiores, os modelos apresentavam *visível* configuração deformada, o que os coloca fora da hipótese cinemática assumida, como já foi mencionado.

Figura 5.16 – CP horizontais: Resultados experimentais e proposto.

As análises não-lineares pelo Método dos Elementos Finitos forneceram os resultados presentes na Tabela 5.13.

Tabela 5.13 – Resultados da análise não-linear pelo MEF sem a consideração do esforço normal.

Análise não-linear - Fre	equências (Hz)
Comprimento (m)	Sem esforço normal
0,20	6,3621
0,25	4,5450
0,30	3,4544
0,35	2,7416
0,40	2,2473
0,45	1,8896
0,50	1,6222
0,55	1,4174
0,60	1,2575
0,65	1,1308
0,70	1,0291
0,75	0,9466
0,80	0,8790
0,85	0,8231
0,90	0,7763

Os resultados não-lineares pelo MEF, os da solução proposta e os resultados dos ensaios estão praticamente sobrepostos, conforme se vê na Figura 5.17, o que revela a adequabilidade da solução analítica, também, para o cálculo da frequência de sistemas exclusivamente elástico-llineares.

Figura 5.17 – Sem esforço axial não-linear: Elementos finitos, experimental e proposto.

As diferenças percentuais entre a análise não-linear pelo MEF e os resultados experimentais mantêm a tendência de crescimento à medida que os modelos tornam-se longos, chagando a alcançar 25,89%, pelos motivos já expostos.

Em relação ao método proposto, a análise não-linear pelo MEF segue com resultados muito próximos aos dados pela Eq. (4.19).

Tabela 5.14 – Sem esforço axial - Diferenças percentuais da análise não-linear pelo MEF.

Comprimento (m)	Com linear por EF	Com experimental	Com proposto
0,20	0,00	1,19	0,77
0,25	0,00	4,45	0,77
0,30	0,00	1,64	0,77
0,35	0,00	1,61	0,77
0,40	0,00	1,32	0,78
0,45	0,00	1,58	0,78
0,50	0,00	0,23	0,78
0,55	0,00	1,76	0,79
0,60	0,00	2,06	0,79
0,65	0,00	6,15	0,80
0,70	0,00	8,73	0,80
0,75	0,00	12,33	0,81
0,80	0,00	20,72	0,81
0,85	0,00	22,22	0,82
0,90	0,00	25,89	0,82

Os resultados experimentais podem então ser reunidos em um único gráfico (Figura 5.18), para que se perceba o conjunto de diferentes resultados que aparecem conforme a solicitação axial imposta aos modelos físicos.

Figura 5.18 – Resultados experimentais.

O gráfico da Figura 5.19 reúne os resultados experimentais e os da solução proposta pela Eq. (4.19).

Figura 5.19 – Resultados experimentais e da solução proposta.

5.7.4 Análise dos ensaios exclusivamente com o peso próprio

A solução dinâmica proposta neste trabalho, para os ensaios com a influência exclusiva do peso próprio, estão baseados na expressão (4.21), na qual fez-se a correção da massa na extremidade devida a influência do acelerômetro e sua base magnética, conforme recomendado no item 4. De forma semelhante, foi feito na modelagem pelo Método dos Elementos Finitos, com o lançamento dessa massa adicional e da força axial correspondente, atribuídas, no modelo numérico, no ponto relativo à aplicação do sensor.

A carga crítica de flambagem de barras submetidas exclusivamente ao seu próprio peso pode ser analisada pela estática ou pela dinâmica. No primeiro processo encontram-se a formulação de Euler-Greenhill e a formulação por autovalores desenvolvida pelo Método dos Elementos Finitos, conforme descrito na Eq. (3.10). No segundo processo, a solução pode ser obtida dinamicamente pelo método proposto neste trabalho ou também pela solução, não-linear, por autovalores pelo Método dos Elementos Finitos.

A Tabela 5.15 apresenta os resultados experimentais obtidos e as diferenças guardadas com as mencionadas soluções dinâmicas. A diferença entre os resultados experimentais e a análise dinâmica linear pelo MEF chega a alcançar mais de 15%, enquanto que na comparação com as análises não-lineares esse valor fica em torno de 3%. Na avaliação dinâmica se pode observar a boa aproximação das soluções não-lineares com os resultados experimentais e um afastamento desses com os resultados lineares.

so próprio.
o pe
usivamente (
excl
erando
Consid
15 -
Tabela 5.

-	Resultados	Proposta	MEF	MEF		Difere	nça (%)	
J	Experimentais	NL	NL	Linear	Exper.	Exper.	Exper.	Proposta
(m)	(Hz)	(Hz)	(Hz)	(Hz)	Ray NL	MEF NL	MEF L	MEF NL
1,00	8,179	8,172	8,229	8,254	-0,09	0,61	0,91	0,70
1,05	7,477	7,481	7,503	7,529	0,05	0,34	0,69	0,29
1,10	6,622	6,869	6,863	6,891	3,60	3,52	3,90	-0,09
1,15	6,317	6,326	6,298	6,326	0,14	-0'30	0,15	-0,44
1,20	5,768	5,841	5,797	5,826	1,26	0,50	1,00	-0,77
1,25	5,188	5,408	5,351	5,381	4,07	3,05	3,60	-1,07
1,30	4,883	5,019	4,953	4,984	2,71	1,41	2,03	-1,34

-	Resultados	Proposta	MEF	MEF		Difere	nça (%)	
J	Experimentais	NL	NL	Linear	Exper.	Exper.	Exper.	Proposta
(m)	(Hz)	(Hz)	(Hz)	(Hz)	Ray NL	MEF NL	MEF L	MEF NL
1,35	4,517	4,669	4,596	4,629	3,26	1,72	2,41	-1,59
1,40	4,303	4,353	4,275	4,309	1,15	-0,65	0,14	-1,82
1,45	3,906	4,067	3,986	4,021	3,95	2,00	2,86	-2,02
1,50	3,693	3,807	3,724	3,760	2,98	0,84	1,79	-2,21
1,55	3,51	3,570	3,487	3,524	1,68	-0,67	0,40	-2,39
1,60	3,296	3,354	3,271	3,309	1,72	-0,78	0,40	-2,54
1,65	3,082	3,156	3,073	3,113	2,34	-0,28	1,00	-2,69
1,70	2,899	2,974	2,893	2,934	2,54	-0,21	1,19	-2,82

-	Resultados	Proposta	MEF	MEF		Difere	nça (%)	
J	Experimentais	NL	NL	Linear	Exper.	Exper.	Exper.	Proposta
(m)	(Hz)	(Hz)	(Hz)	(Hz)	Ray NL	MEF NL	MEF L	MEF NL
1,75	2,747	2,808	2,727	2,770	2,16	-0,72	0,81	-2,95
1,80	2,594	2,654	2,575	2,619	2,26	-0,74	0,94	-3,06
1,85	2,472	2,512	2,435	2,480	1,59	-1,53	0,30	-3,17
1,90	2,299	2,381	2,305	2,351	3,43	0,27	2,22	-3,27
1,95	2,197	2,259	2,185	2,233	2,74	-0,53	1,59	-3,36
2,00	2,106	2,146	2,074	2,123	1,86	-1,53	0,79	-3,45
2,05	1,984	2,041	1,971	2,021	2,77	-0,66	1,82	-3,53
2,10	1,892	1,943	1,876	1,926	2,60	-0,88	1,77	-3,57

_	Resultados	Proposta	MEF	MEF	Ľ	Difere	nça (%)	
Ē	Experimentals (Hz)	NL (Hz)	(Hz)	Linear (Hz)	Exper. Ray NL	EXPER. MEF NL	Exper. MEF L	MEF NL
15	1,801	1,851	1,786	1,838	2,71	-0,84	2,00	-3,65
20	1,724	1,766	1,702	1,755	2,35	-1,27	1,78	-3,72
25	1,648	1,685	1,624	1,678	2,22	-1,48	1,80	-3,78
30	1,556	1,610	1,551	1,606	3,37	-0,34	3,13	-3,84
35	1,495	1,540	1,482	1,539	2,91	-0,88	2,84	-3,91
40	1,434	1,473	1,417	1,475	2,68	-1,18	2,80	-3,97
45	1,373	1,411	1,356	1,416	2,70	-1,22	3,02	-4,02

Alexandre de Macêdo Wahrhaftig

	Proposta	MEF NL	-4,08	-4,14	-4,19	-4,25	-4,31	-4,36	-4,42	
ença (%)	Exper.	MEF L	3,51	4,28	2,88	4,16	3,17	4,98	4,26	
Difere	Exper.	MEF NL	66'0-	-0,47	-2,25	-1,24	-2,63	-1 ,06	-2,20	
	Exper.	Ray NL	2,97	3,52	1,86	2,89	1,61	3,16	2,13	
MEF	Linear	(Hz)	1,360	1,307	1,257	1,210	1,166	1,124	1,084	
MEF	NL	(Hz)	1,299	1,245	1,194	1,146	1,100	1,057	1,016	
Proposta	NL	(Hz)	1,352	1,297	1,244	1,194	1,147	1,103	1,061	
Resultados	Experimentais	(Hz)	1,312	1,251	1,221	1,16	1,129	1,068	1,038	
-	J	(m)	2,50	2,55	2,60	2,65	2,70	2,75	2,80	
	Proposta	MEF NL	-4,47	-4,53	-4,59	-4,49	-4,55	-4,60	-4,65	-4,71
------------	---------------	--------	-------	-------	-------	-------	-------	-------	-------	-------
nça (%)	Exper.	MEF L	5,21	3,34	6,22	6,31	6,56	6,86	7,45	8,11
Difere	Exper.	MEF NL	-1,57	-3,99	-1,31	-1,51	-1,70	-1,84	-1,68	-1,48
	Exper.	Ray NL	2,78	0,52	3,14	2,85	2,72	2,64	2,84	3,09
MEF	Linear	(Hz)	1,047	1,011	0,977	0,945	0,914	0,885	0,857	0,830
MEF	NL	(Hz)	0,977	0,940	0,904	0,872	0,840	0,809	0,780	0,752
Proposta	NL	(Hz)	1,020	0,982	0,946	0,911	0,878	0,846	0,816	0,787
Resultados	Experimentais	(Hz)	0,992	0,977	0,916	0,885	0,854	0,824	0,793	0,763
-	J	(m)	2,85	2,90	2,95	3,00	3,05	3,10	3,15	3,20

Res	ultados	Proposta	MEF	MEF		Difere	nça (%)	
Experimentais		NL	NL	Linear	Exper.	Exper.	Exper.	Proposta
(Hz)		(Hz)	(Hz)	(Hz)	Ray NL	MEF NL	Mef L	MEF NL
0,732		0,760	0,725	0,805	3,64	-0,95	9,06	-4,77
0,717		0,733	0,699	0,781	2,21	-2,50	8,17	-4,82
0,692		0,708	0,675	0,758	2,24	-2,53	8,66	-4,89
0,659		0,684	0,651	0,736	3,59	-1,18	10,40	-4,95
0,641		0,660	0,629	0,714	2,91	-1,96	10,27	-5,01
0,61		0,638	0,607	0,694	4,35	-0,51	12,12	-5,08
0,59		0,616	0,586	0,675	4,25	-0,69	12,55	-5,15
0,57	0),595	0,566	0,656	4,26	-0,74	13,12	-5,23

-	Resultados	Proposta	MEF	MEF		Difere	nça (%)	
J	Experimentais	NL	NL	Linear	Exper.	Exper.	Exper.	Proposta
(m)	(Hz)	(Hz)	(Hz)	(Hz)	Ray NL	MEF NL	MEF L	MEF NL
3,65	0,565	0,575	0,546	0,638	1,80	-3,41	11,47	-5,31
3,70	0,534	0,556	0,528	0,621	3,97	-1,20	14,02	-5,39
3,75	0,519	0,537	0,510	0,605	3,44	-1,84	14,16	-5,47
3,80	0,504	0,520	0,492	0,589	2,99	-2,41	14,41	-5,56
3,85	0,488	0,502	0,475	0,574	2,83	-2,67	14,93	-5,66
3,90	0,473	0,485	0,459	0,559	2,56	-3,05	15,39	-5,76
(L=c	omprimento, l=	autovalores, F	P=peso próț	orio, MEF=Mé	étodo dos Ele	ementos Finit	os, Exper.=E	xperimental)

Os gráficos da Figura 5.20 trazem as curvas dos resultados dinâmicos e uma ampliação da região de comprimentos mais elevados, onde se torna mais evidente a influência da rigidez geométrica.

Figura 5.20 – Resultados do ensaio como peso próprio-tubo.

Pela Figura 5.21 fica clara a tendência de que o comprimento crítico de flambagem corresponda ao mesmo valor, tanto pela análise estática de Euler-Greenhill quanto pelos resultados experimentais.

Figura 5.21 – Resultados do ensaio com o peso próprio.

As diferenças entre os resultados obtidos pela formulação de Euler-Greenhill e a de Elementos Finitos situam-se logo acima dos 2%. A Tabela 5.16 e a Figura 5.22 apresentam os resultados dessas análises. Tabela 5.16 – Euler e MEF: exclusivamente o peso próprio.

Difer	(%)	1,90	1,81	1,72	1,63	1,54	1,46	1,38	1,30
Euler	(N)	74,31	71,37	68,60	65,99	63,52	61,19	58,98	56,90
MEF	(N)	75,73	72,66	69,78	67,06	64,50	62,08	59,80	57,64
N	Ш	50	50	50	50	50	50	50	50
РР	(N)	6,24	6,36	6,48	6,60	6,72	6,84	6,96	7,08
Aut.	_	12,14	11,43	10,77	10,16	9,60	9,08	8,59	8,14
_	(m)	2,45	2,50	2,55	2,60	2,65	2,70	2,75	2,80
Difer	(%)	0,68	1,44	2,01	2,42	2,71	2,91	3,03	3,10
Euler	(N)	446,06	404,59	368,65	337,29	309,77	285,48	263,94	244,75
MEF	(N)	449,10	410,41	376,04	345,45	318,17	293,79	271,95	252,33
0 N	EF	50	50	50	50	50	50	50	50
РР	(N)	2,73	2,85	2,97	3,10	3,22	3,34	3,46	3,58
Aut.	-	164,35	143,83	126,43	111,61	98,94	88,05	78,66	70,52
_	(m)	1,00	1,05	1,10	1,15	1,20	1,25	1,30	1,35

Difer	(%)	1,22	1,15	1,07	2,57	2,50	2,44	2,37	2,31
Euler	(N)	54,92	53,04	51,26	49,56	47,95	46,42	44,95	43,56
MEF	(N)	55,59	53,65	51,81	50,83	49,15	47,55	46,02	44,57
N ⁰	EF	50	50	50	100	100	100	100	100
Ч	(N)	7,20	7,32	7,44	7,56	7,69	7,81	7,93	8,05
Aut.	-	7,72	7,33	6,96	6,72	6,40	6,09	5,81	5,54
_	(m)	2,85	2,90	2,95	3,00	3,05	3,10	3,15	3,20
Difer	(%)	3,12	3,10	3,05	2,98	2,90	2,80	2,69	2,58
Euler	(N)	227,58	212,16	198,25	185,67	174,24	163,84	154,35	145,65
MEF	(N)	234,67	218,73	204,29	191,20	179,29	168,43	158,50	149,41
N	EF	50	50	50	50	50	50	50	50
Ч	(N)	3,70	3,82	3,94	4,06	4,18	4,30	4,42	4,54
Aut.	-	63,44	57,26	51,84	47,08	42,87	39,14	35,83	32,88
_	(m)	1,40	1,45	1,50	1,55	1,60	1,65	1,70	1,75

Difer	(%)	2,25	2,20	2,14	2,08	2,03	1,98	1,93	1,88
Euler	(N)	42,23	40,96	39,75	38,59	37,48	36,41	35,39	34,42
MEF	(N)	43,18	41,86	40,60	39,39	38,24	37,13	36,08	35,06
N ⁰	EF	100	100	100	100	100	100	100	100
Ч	(N)	8,17	8,29	8,41	8,53	8,65	8,77	8,89	9,01
Aut.	_	5,29	5,05	4,83	4,62	4,42	4,23	4,06	3,89
_	(m)	3,25	3,30	3,35	3,40	3,45	3,50	3,55	3,60
Difer	(%)	2,46	2,34	2,22	2,10	1,98	1,86	2,60	2,49
Euler	(N)	137,67	130,33	123,56	117,31	111,52	106,14	101,15	96,50
MEF	(N)	141,06	133,39	126,31	119,77	113,72	108,12	103,77	98,90
0 N	EF	50	50	50	50	50	50	50	50
Ч	(N)	4,67	4,79	4,91	5,03	5,15	5,27	5,39	5,51
Aut.	-	30,24	27,87	25,74	23,82	22,09	20,52	19,25	17,95
_	(m)	1,80	1,85	1,90	1,95	2,00	2,05	2,10	2,15

Difer	(%)	1,83	1,78	1,73	1,69	1,64	1,60	sop opc
Euler	(N)	33,48	32,58	31,72	30,89	30,09	29,33	EF=Mét
MEF	(N)	34,09	33,16	32,27	31,41	30,59	29,80	initos, M
N ⁰	EF	100	100	100	100	100	100	entos F
Ч	(N)	9,13	9,26	9,38	9,50	9,62	9,74	e Eleme
Aut.	_	3,73	3,58	3,44	3,31	3,18	3,06	mero d
_	(m)	3,65	3,70	3,75	3,80	3,85	3,90	EF=Nú
Difer	(%)	2,39	2,29	2,19	2,09	1,99		orio, N ^o
Euler	(N)	92,16	88,11	84,32	80,77	77,44		oeso prój
MEF	(N)	94,36	90,13	86,17	82,46	78,99		res, PP=r
N ⁰	EF	50	50	50	50	50		autovalc
Ч	(N)	5,63	5,75	5,87	5,99	6,11		ento, l=:
Aut.	_	16,76	15,67	14,67	13,76	12,92		comprime
_	(m)	2,20	2,25	2,30	2,35	2,40		(L=

Elementos Finitos).

Figura 5.22 – Euler e Elementos Finitos: exclusivamente o peso próprio.

Quando se analisa sob a hipótese de pequenos deslocamentos, a influência do peso próprio na carga crítica de flambagem, verifica-se que, quando o valor qL supera o valor dado pela expressão (3.1) $P_{\rm Cr}$ torna-se negativo, o que pode ser apreciado pela Figura 5.23.

Por regressão de potência chega-se a uma equação que representa os resultados pelo processo estático do MEF (457,79L^{-2,0059}). Essa é 2,7% superior à da formulação de Euler-Greenhill (445,49L⁻²).

Figura 5.23 – Solução de Euler-Greenhill.

Uma outra forma de se obter a carga crítica de flambagem é por meio da expressão da rigidez generalizada total, desenvolvida no capítulo 4. A expressão (4.25) quando igualada a zero fornece a equação para o valor para a carga crítica de flambagem, Eq. (5.2),

$$qL_{crit} = \frac{8,298EI}{L^2}$$
. (5.2)

que é 5,17 % maior que a solução de Euler-Greenhill da Eq. (3.4).

O comprimento crítico de flambagem, com os parâmetros da barra testada, pela solução de Euler-Greenhill, quando se leva em conta o peso próprio na carga crítica de Euler, é de 5,8 m. Pela solução desenvolvida neste trabalho chega-se ao mesmo resultado, porem é necessário retirar a massa do acelerômetro da formulação, como foi mencionado no início desta seção, pois a força axial correspondente não pôde ser contemplada por meio do equacionamento de Euler-Greenhill, apresentado no capítulo 3.

Os traçados correspondentes aos comprimentos críticos pelos dois processos podem ser observados na Figura 5.24. Esses resultados reforçam a validade da formulação proposta com a função de forma escolhida. Em suma, a consideração do peso próprio dos elementos estruturais pela Eq. (3.5) na carga de crítica de flambagem da Eq. (3.1) é o equivalente à consideração da rigidez geométrica nas análises não-lineares, quer sejam dinâmicas ou estáticas.

Figura 5.24 - Comprimento crítico de flambagem.

5.8 RESUMO

O conjunto de ensaios dinâmicos conduzidos em laboratório permitiu comprovar experimentalmente a influência da carga axial na frequência natural de vibração dos sistemas estruturais. Em um primeiro grupo de ensaios foi aplicada uma massa concentrada na extremidade da barra e três posições de testes foram adotadas, uma para o esforço de compressão, outra para o esforço de tração e uma terceira para a ausência do esforço normal. Esperava-se encontrar três valores distintos para as frequências, o que foi confirmado.

Um segundo grupo de testes foi conduzido levando em conta modelos sujeitos exclusivamente ao seu peso próprio, visando simular sistemas com reduzida força axial externa aplica. A aferição da solução proposta neste trabalho foi feita dinamicamente e também pelo método estático para a determinação da carga crítica de flambagem, tanto pela solução de Euler-Greenhill quanto a solução do Método dos Elementos Finitos.

É possível concluir, portanto, que, dentro do intervalo de validade adotado para a equação (4.19), os resultados experimentais confirmaram:

- primeiramente, o caráter não-linear geométrico de sistema esbeltos;
- segundo, a validade do método proposto; e;
- por último, o cálculo correto da frequência do primeiro modo de vibração, propiciado pela solução desenvolvida neste trabalho.

Em outras palavras, a formulação elaborada nesta Tese, para o cálculo da frequência fundamental de estruturas em balanço, pôde ser avaliada por meio de análises dinâmicas e estáticas, sendo possível validar seus resultados.

As análises feitas utilizando como referência os modelos físicos de laboratório levaram à comprovação de que a consideração do esforço normal na rigidez dos sistemas estruturais modifica as suas frequências de vibração.

No capítulo 7 será investigada a aplicabilidade da solução proposta à estruturas reais e as repercussões que as frequências calculadas sob não-linearidade geométrica trazem ao cálculo da ação dinâmica do vento.

Ainda no capítulo 7, será apresentada uma investigação experimental de campo, realizada sobre uma estrutura real, para avaliação do método e da solução proposta neste trabalho.

No capítulo seguinte serão apresentados os modelos para o cálculo da ação do vento segundo a NBR 6123/88 – Forças devidas ao vento em edificações.