LISTA DE FIGURAS

Figura 1.1 — Stent trançado com fio comercial de NiTi com encurtamento desenvolvido no	
LdTM/UFRGS: (a) em sua forma original e (b) sendo expelido do sistema introdutor	
[Vearick, 2006 A]	18
Figura 2.1 — Termograma superior e inferior de DSC com taxa de aquecimento e resfriamento de	
10°C/min [Shaw, 1995	23
Figura 2.2 – Exemplo do efeito de memória de forma em um fio de Nitinol [Talkingelectronics, 2006]	24
Figura 2.3 — Curva tensão vs. deformação apresentando propriedade da superelasticidade do Nitinol	
[Shaw, 1995]	26
Figura 2.4 — Curvas tensão vs. deformação martensíticas de corpos de prova retirados	
longitudinalmente e transversalmente à direção de laminação [Duerig, 1990	26
Figura 2.5 — Curvas tensão vs. deformação martensíticas para uma liga de Ni-Ti-10% Cu realizada	
em compressão, tração e torção [Dueriq, 1990	27
Figura 2.6 — Tendência de aumento da densidade de compactados de ferro em função da pressão de	
compactação [Chiaverini, 2001	28
Figura 2.7 — Diagrama de fases do Nitinol [McNeese, 2000	29
Figura 2.8 — (a) Micrografia de uma liga de NiTi equiatômica trabalhada à quente mostrando	
a distribuição fina das partículas de segunda fase e (b) micrografia de uma liga	
de 52% at. Ni mostrando partículas de tamanho mais grosseiro [Duerig, 1990	29
Figura 2.9 — Micrografia obtida ao MEV de NiTi equiatômico obtido por compressão isostática	
à quente apresentando estrutura martensítica maclada [McNeese, 2000	30
Figura 2.10 — Micrografia de NiTi obtido por compressão isostática à quente	
com 18,8% de porosidade [Greiner, 2005	31
Figura 2.11 – Desenho esquemático de (a) extrusão direta e (b) extrusão indireta [Johnson, 1971	31
Figura 2.12 – Desenho esquemático de extrusão hidrostática [Talbert, 1996	33
Figura 2.13 — Desenho esquemático de extrusão em câmara fechada [Talbert, 1996	33
Figura 2.14 — Desenho esquemático de uma trefilação de barras cilíndricas [Button, 2004	35
Figura 2.15 — Representação das regiões de uma matriz de trefilação [Button, 2004	36
Figura 2.16 — Representação das tensões e padrões de escoamento que podem ser obtidos	
através de trefilação [Talbert, 1996	37
Figura 2.17 — Representação dos produtos que podem ser obtidos através de trefilação	
[Talbert, 1996]	38
Figura 2.18 — Micrografias ópticas de NiTi de (a) tubo tratado por cinco minutos à 485°C;	
(b) chapa tratada por cinco minutos à 485°C e	
(c) chapa tratada por trinta minutos à 850°C [Robertson, 2003]	38
Figura 2.19 — Desenho esquemático da (a) trefilação de tubos sem plug e	
(b) com plug com haste [Yoshida, 001	39
Figura 2.20 — Curva de escoamento de tubo de NiTi com 8mm de diâmetro externo	
e 0,5mm de espessura [Yoshida, 001]	39

Figura 2.21 — Resultados de uma simulação dos esforços e deformações	
em trefilação de tubo de NiTi (a) sem plug com redução de 22% e	
(b) com plug com haste com redução de 20% [Yoshida, 001]	39
Figura 3.1 — Procedimento experimental adotado para o estudo de obtenção de fios de NiTi	42
Figura 3.2 — Máquina de ensaios universais EMIC DL 500 equipada com acessórios	
para ensaio de tração de fios de iTi	44
Figura 3.3 — Distribuição das identações no fio de NiTi ao longo da seção transversal	44
Figura 3.4 — Pós de níquel e titânio utilizados para a compactação dos <i>billets</i> de Nitinol	46
Figura $3.5 -$ Moinho atritor utilizado para realizar a mistura dos pós de níquel e titânio no	
LdTM/UFRGS	46
Figura 3.6 — Matriz de compactação e punções fabricados no LdTM/UFRGS	
para obtenção dos <i>billets</i> de 8,3mm de diâmetro e 12,45mm de altura	48
Figura 3.7 — Equipamento existente no LdTM/UFRGS utilizado para as compactações dos <i>billets</i> de Nitinol	48
Figura 3.8 — Forno de sinterização fabricado no LdTM/UFRGS	49
Figura 3.9 — Ciclo térmico utilizado na sinterização (980°C) de NiTi [Vearick, 2006 B]	49
Figura 3.10 — Montagem experimental para o ensaio de compressão à 25°C dos <i>billets</i> de Nitinol	
no LdTM/UFRGS	50
Figura 4.1 — Curva de escoamento obtida por ensaio de tração de fio de NiTi de 0,155mm de diâmetro	54
Figura 4.2 — Micrografias ópticas do fio de NiTi da empresa NDC em seu estado original de fornecimento	
(a) em sentido longitudinal e sem ataque químico;	
(b) em sentido transversal e sem ataque químico;	
(c) em sentido longitudinal e com ataque químico e	
(d) em sentido transversal e com ataque químico	55
Figura 4.3 — Micrografia ao MEV do fio de Nitinol comercial com ataque químico na seção	
(a) longitudinal e (b) transversal	56
Figura 4.4 – Espectro de EDS do fio comercial de NiTi	57
Figura 4.5 — Micrografias ópticas mostrando a zona de ruptura de um fio de NiTi da empresa	
NDC ensaiado em tração (a) sem ataque químico e (b) com ataque químico	57
Figura 4.6 – Termograma de DSC do fio de NiTi em seu estado de fornecimento	58
Figura 4.7 — Ditratograma de raios-X da mistura de 4h de pós de Ni e Ti	59
Figura 4.8 — Microgratia ao MEV da mistura de pós de 4h com (a) aumento de 50x e (b) aumento de 200x	60
Figura 4.9 – Curva de compressibilidade do billet de 8,3mm de diâmetro	60
Figura 4.10 – Fotografia do billet à verde com dimensões de 8,3mm de diâmetro e	
12,45mm de comprimento (a) em pé e (b) deitado	61
Figura 4.11 – Fotografia do billet sinterizado com dimensões de 8,5mm de diâmetro e	
12,55mm de comprimento (a) em pé e (b) deitado	61
Figura 4.12 — Micrografia óptica da seção longitudinal do billet sinterizado (a) sem ataque e	
(b) com ataque químico	62
Figura 4.13 – Ultratograma de raios-X do billet sinterizado	63
Figura 4.14 — Micrografia ao MEV do billet sinterizado (a) na seção longitudinal e (b) na seção fransversal	63
Figura 4.15 – Espectrograma de EUS da seção longitudinal do billet sinterizado	64

Figura 4.16 — Curva de escoamento do billet de NiTi obtida através de ensaio de compressão	
à temperatura ambiente de 25°C	. 65
Figura 4.17 - Micrografia óptica (a) sem ataque e (b) com ataque na região central longitudinal	
do billet de 8,3mm de diâmetro ensaiado em compressão para uma deformação	
de aproximadamente 45%	. 65
Figura 4.18 - Termograma de DSC do billet de NiTi obtido	. 67
Figura 4.19 — Modelo 3D da matriz de extrusão projetada	. 68
Figura 4.20 — Modelo 3D mostrando o detalhe do encaixe do inserto na matriz bipartida com	
seus canais para inserção de termopar e da resistência	. 69
Figura 4.21 — Fotografia da matriz de extrusão montada com o aquecedor	. 69
Figura 4.22 — Aproximação polinomial da região plástica da curva de escoamento verdadeira do fio de NiTi	
de 0,155mm de diâmetro da empresa NDC	. 70
Figura 4.23 — Desenho da montagem do inserto na carcaça de trefilação	. 70
Figura 6.1 — Diagrama proposto para a obtenção do fio de NiTi	. 76
Figura 6.2 — Tubo de cobre comercial com a mistura de pós de Ni e Ti pré-compactado em seu interior	. 77