RICARDO FIGUEIRA BIDONE

TRATAMENTO DE LIXIVIADO DE ATERRO SANITÁRIO POR UM SISTEMA COMPOSTO POR FILTROS ANAERÓBIOS SEGUIDOS DE BANHADOS CONSTRUÍDOS:

Estudo de caso – Central de Resíduos do Recreio, em Minas do Leão/RS

2ª edição

Blucher

RICARDO FIGUEIRA BIDONE

TRATAMENTO DE LIXIVIADO DE ATERRO SANITÁRIO POR UM SISTEMA COMPOSTO POR FILTROS ANAERÓBIOS SEGUIDOS DE BANHADOS CONSTRUÍDOS:

Estudo de caso – Central de Resíduos do Recreio, em Minas do Leão/RS

Dissertação apresentada à Escola de Engenharia de São Carlos da Universidade de São Paulo, como parte dos requisitos para a obtenção do título de Mestre em Engenharia (Hidráulica e Saneamento).

Orientador: Prof. Titular Jurandyr Povinelli

Tratamento de lixiviado de aterro sanitário por um sistema composto por filtros anaeróbios seguidos de banhados construídos: estudo de caso – Central de Resíduos do Recreio, em Minas do Leão/RS © 2017 Ricardo Figueira Bidone Editora Edgard Blücher Ltda.

1ª edição – 2008 2ª edição – 2017

Blucher

Rua Pedroso Alvarenga, 1245, 4° andar 04531-934 – São Paulo – SP – Brasil Tel.: 55 11 3078-5366 contato@blucher.com.br www.blucher.com.br

Segundo o Novo Acordo Ortográfico, conforme 5. ed. do *Vocabulário Ortográfico da Língua Portuguesa*, Academia Brasileira de Letras, março de 2009.

É proibida a reprodução total ou parcial por quaisquer meios sem autorização escrita da Editora.

Todos os direitos reservados pela Editora Edgard Blücher Ltda. Dados Internacionais de Catalogação na Publicação (CIP) Angélica Ilacqua CRB-8/7057

Bidone, Ricardo Figueira

Tratamento de lixiviado de aterro sanitário por um sistema composto por filtros anaeróbios seguidos de banhados construídos: estudo de caso: Central de Resíduos do Recreio, em Minas do Leão/RS [livro eletrônico] / Ricardo Figueira Bidone. - 2. ed. - São Paulo: Blucher, 2017.

156 p.; PDF

Bibliografia ISBN 978-85-8039-148-0 (e-book)

 Aterros sanitários 2. Banhados construídos 3. Filtros anaeróbicos
 Lixiviado - tratamento I. Título.

16-0336

CDD 628.3

Índices para catálogo sistemático: 1. Tratamento de esgotos : Engenharia sanitária

AGRADECIMENTOS

Agradeço ao Professor Jurandyr Povinelli, por ter me oportunizado, como orientador, ricas experiências durante todo o mestrado na EESC.

Agradeço à Professora Maria do Carmo Calijuri, por ter intercedido por mim junto ao Programa de Pós-graduação em Hidráulica e Saneamento, fazendo valer a sua posição de Coordenadora, em um momento de dificuldade que enfrentei, acreditando no trabalho e garantindo a sua tranqüila conclusão.

Agradeço à SIL – Soluções Ambientais LTDA., em especial ao Engº Fernando Hartmann, seu Diretor Vice-Presidente, pela permissão de utilização dos dados gerados no aterro sanitário da Central de Resíduos do Recreio.

Agradeço ao Eng^o Adriano Locatelli da Rosa, Gerente de Operações da Central de Resíduos do Recreio, que não mediu esforços para viabilizar todo o necessário para esta pesquisa.

Agradeço de maneira especial aos técnicos do Laboratório de Saneamento.

Agradeço à Professora Ruth Gouvêa Duarte pelas várias sugestões.

Agradeço à CAPES/PROEX pela concessão da bolsa de estudos.

Agradeço, finalmente, a todos que contribuíram de alguma forma para a realização deste trabalho.

RESUMO

BIDONE, R.F. (2007). Tratamento de lixiviado de aterro sanitário por um sistema composto por filtros anaeróbios seguidos de banhados construídos: Estudo de caso – Central de Resíduos do Recreio, em Minas do Leão/RS. Dissertação de Mestrado. São Carlos: Escola de Engenharia de São Carlos, Universidade de São Paulo.

A presente pesquisa abordou o estudo em escala real do tratamento de lixiviado de aterro sanitário em um sistema composto por dois filtros anaeróbios seguidos de dois banhados construídos. O trabalho foi desenvolvido na Estação de Tratamento de Lixiviado do aterro sanitário pertencente à Central de Resíduos do Recreio, localizada em Minas do Leão/RS. Pretendeu-se verificar a eficiência do sistema na remoção de matéria orgânica e de nitrogênio amoniacal. A Fase 1 da pesquisa, que avaliou o desempenho dos filtros anaeróbios quando operados em série, indicou que a quase totalidade da remoção de matéria orgânica facilmente biodegradável ocorreu no primeiro filtro, evidenciando que, para o tratamento do lixiviado em questão, não é interessante a utilização de dois filtros anaeróbios de fluxo ascendente semelhantes em série. A Fase 2 avaliou o desempenho dos filtros anaeróbios operados em paralelo e dos banhados construídos. Foi possível concluir-se que: filtros anaeróbios de fluxo ascendente são excelente alternativa para o tratamento de lixiviado de aterro sanitário, pois podem viabilizar remoções de matéria orgânica superiores a 50%; banhados construídos representam uma ecotecnologia interessante para o complemento do tratamento de lixiviado, pois podem viabilizar elevadas remoções de N-amoniacal.

Palavras-chave: tratamento de lixiviado, banhados construídos, filtros anaeróbios.

ABSTRACT

BIDONE, R.F. (2007). Sanitary landfill leachate treatment for a system composed by upflow anaerobic filters followed by constructed wetlands: Case study – Recreio Central Waste, in Minas do Leão/RS. M.Sc. Dissertation. School of Engineering at San Carlos, University of Sao Paulo, San Carlos, Brazil.

This study discussed the sanitary landfill leachate treatment in a full scale system composed by two upflow anaerobic filters followed by two constructed wetlands. The research was developed at the Landfill Leachate Treatment Station owned by Recreio Central Waste, located in Minas do Leão/RS. The objective of the study was to verify the efficiency of the system in the removal of organic matter and ammonia nitrogen. The Phase 1 of the study, which evaluated the performance of anaerobic filters when operated in series, indicated that almost all of the removal of organic matter readily biodegradable occurred in the first filter, showing that, for the treatment of leachate concerned, it is not interesting the use of two similar upflow anaerobic filters in series. The Phase 2 assessed the performance of the anaerobic filters, operated in parallel, and the constructed wetlands. It could be concluded that: upflow anaerobic filters are excellent alternative for the sanitary landfill leachate treatment, as they may facilitate removal of organic matter greater than 50%; constructed wetlands represent an interesting ecotechnology to complement the leachate treatment, which can enable high removals of N-ammonia.

Keywords: sanitary landfill leachate treatment, constructed wetlands, anaerobic filters.

CONTEÚDO

Capítulo 1	
INTRODUÇÃO	25
Capítulo 2	
OBJETIVOS	27
2.1. Objetivo principal	27
2.2. Objetivos específicos	27
Capítulo 3	
REVISÃO BIBLIOGRÁFICA	29
3.1. Conceituação, geração e caracterização de lixiviado de aterro	
sanitário	29
3.2. Processos de tratamento de lixiviado de aterro sanitário	32
3.2.1. Remoção de amônia por aeração mecânica	33
3.2.2. Adsorção em carvão ativado	35
3.2.3. Processos de membrana	35
3.2.4. Evaporação	37
3.2.5. Aspersão sobre o solo	38
3.2.6. Coagulação, floculação, sedimentação ou flotação	39
3.2.7. Oxidação química	41
3.2.8. Processo foto-eletroquímico	42
3.2.9. Lagoas anaeróbias e lagoas facultativas	43
3.2.10. Tratamento conjunto em ETE	44
3.2.11. Recirculação de lixiviado	45
3.2.12. Tratamento em leito de vermicomposto	46
3.2.13. Processos biológicos aeróbios convencionais	46
3 2 13 1 Filtros percoladores	46

	3.2.13.2. Contator biológico rotatório	48
	3.2.13.3. Lagoas ou tanques de aeração mecânica	49
	3.2.13.4. Lodos ativados	50
	3.2.14. Processos biológicos anaeróbios convencionais	51
	3.2.14.1. Reatores UASB	51
	3.2.14.2. Filtros anaeróbios de fluxo ascendente	51
	3.2.15. Banhados construídos	56
3.3.	Padrão de emissão de efluentes	60
3.4.	O Nitrogênio amoniacal e a Resolução N° 357	62
3.5.	Filtros anaeróbios seguidos de banhados construídos:	
	justificativas	63
Cap	oítulo 4	
MA	TERIAL E MÉTODOS	65
4.1.	Descrição geral	65
4.2.	Estação de tratamento de lixiviado proposta originalmente	67
4.3.	Estação de tratamento de lixiviado reformulada	68
4.4.	Caracterização dos filtros	70
	4.4.1. Dimensões	70
	4.4.2. Tempo médio de detenção hidráulica nos filtros	71
	4.4.3. Abastecimento dos filtros	71
	4.4.4. Construção dos filtros	72
4.5.	Caracterização dos banhados	76
	4.5.1. Considerações iniciais	76
	4.5.2. Banhado de fluxo subsuperficial	76
	4.5.3. Banhado de fluxo superficial	77
	4.5.4. Operação dos banhados construídos	78
	4.5.5. Construção dos banhados	78
4.6.	Análises e exames	82
	4.6.1. Ensaios de caracterização	82
	162 Engajos do controlo	83

Capítulo 5 RESULTADOS E DISCUSSÃO......85 5 2 2 3. Ácidos voláteis 99 5.2.2.5. Bactérias heterotróficas 99 5.4. Intervenções estruturais já em execução no sistema de SUGESTÕES 119 ANEXOS 125

LISTA DE TABELAS

Tabela 3.1.	Remoção de DQO em reatores anaeróbios no tratamento de	
	lixiviado	54
Tabela 3.2.	Padrão de lançamento de efluente para fonte poluidora	
	não-doméstica6	31
Tabela 3.3.	Concentrações máximas permitidas e eficiências mínimas	
	exigidas na remoção de N-amoniacal e de fósforo total em	
	lixiviados	31
Tabela 4.1.	Ensaios usados na caracterização do lixiviado durante a	
	Fase 2	33
Tabela 4.2.	Ensaios usados no controle do lixiviado durante a Fase 1 8	34
Tabela 4.3.	Ensaios usados no controle do lixiviado durante a Fase $2\dots$	34
Tabela 5.1.	Caracterização expedita do lixiviado bruto (concentração	
	em mg/L)*	35
Tabela 5.2.	$DBO_{\scriptscriptstyle{5,20}}$, DQO, COT e eficiência média do primeiro filtro	36
Tabela 5.3.	$\mathrm{DBO}_{\scriptscriptstyle{5,20}}$, DQO, COT e eficiência média do segundo filtro8	36
Tabela 5.4.	Eficiência global média do sistema	36
Tabela 5.5.	Caracterização do lixiviado do aterro	92
Tabela 5.6.	Remoção de $\mathrm{DBO}_{\scriptscriptstyle{5,20}}$ no banhado de fluxo subsuperficial 10)2
Tabela 5.7.	Remoção de DQO no banhado de fluxo subsuperficial 10)4
Tabela 5.8.	Remoção de COT no banhado de fluxo subsuperficial 10)5
Tabela 5.9.	Remoção de N-amoniacal no banhado)6
Tabela 5.10.	Remoção de NTK no banhado)7
Tabela 5.11.	Remoção de nitrito no banhado)9
Tabala 5 19	Remoção de nitrato no banhado	1 ^

LISTA DE FIGURAS

Figura 4.1.	Descarga do material usado no recobrimento da massa de
	resíduos
Figura 4.2.	Vista de uma das enormes cavas de mineração existentes
	na área do aterro
Figura 4.3.	Vista das duas lagoas anaeróbias e das três lagoas
	facultativas
Figura 4.4.	Esquema das duas lagoas anaeróbias em série com as três
	lagoas facultativas
Figura 4.5.	Os dois filtros anaeróbios de fluxo ascendente (ao lado das
	três lagoas facultativas desativadas) e, na parte inferior da
	figura, os dois banhados construídos
Figura 4.6.	Fluxograma de funcionamento do sistema na Fase 1 da
	pesquisa69
Figura 4.7.	Fluxograma de funcionamento do sistema na Fase 2 da
	pesquisa
Figura 4.8.	Corte esquemático dos filtros
Figura 4.9.	Tanque a partir do qual era bombeado o lixiviado até o
	divisor de águas do aterro
Figura 4.10). (a) Vista geral da área de localização dos filtros.
	(b) Espalhamento de camada de areia sobre lona plástica
	amarela disposta, ainda, sobre manta de PEAD. (c)
	Seqüência do espalhamento da camada de areia. (d)
	Começo da colocação de pranchas de madeira no fundo
	do filtro. (e) Seqüência da colocação das pranchas de
	madeira sobre as quais foi colocado o leito filtrante. (f)

Distribuição das	pranchas de madeira no fundo da
unidade	73
Figura 4.11. (a) Colocação da	primeira camada de pedras (pedra-de-
mão) na base	dos filtros. (b) Etapa final de
preenchimento d	o fundo dos filtros com pedra-de-mão.
(c) Vista do fui	ndo de um dos filtros com a base já
preenchida. (d)	Detalhe do fundo de um dos filtros. (e)
Espalhamento d	a brita que constitui o horizonte de
filtração. (f) Tub	os que, durante o início da operação do
sistema, introdu	ziam o lixiviado no primeiro dos
filtros	74
Figura 4.12. (a) Estrutura part	idora de vazão que foi utilizada no início
da operação dos t	iltros. (b) Mangueiras que introduziam o
lixiviado nos tub	os alimentadores do primeiro filtro da
série. (c) Camin	hão-pipa descarregando o lixiviado em
tubulação que se	e estendia até o partidor de vazão. (d)
Ascensão da lâm	ina de lixiviado no filtro. (e) Vista do
primeiro e do se	gundo filtro. (f) Estrutura partidora de
vazão modificada	substituindo a distribuição inicial
Figura 4.13 No primeiro plano,	os dois filtros anaeróbios e, ao fundo, as
três lagoas faculta	itivas (conjunto que compunha o sistema
de tratamento ori	ginalmente)
Figura 4.14. Macrófita aquática	da espécie <i>Typha subulata</i> 76
Figura 4.15. Corte esquemático	do banhado de fluxo subsuperficial77
Figura 4.16. Corte esquemático	do banhado de fluxo superficial77
Figura 4.17. (a) Vista do terre	no onde foram executados os banhados.
(b) Impermeabi	lização da base dos banhados. (c)
Finalização do pr	reenchimento com brita do banhado de
fluxo subsuperfic	al

Figura 4.18. (a) Vista das bases dos banhados. (b) Preparação do canal	
de alimentação do banhado de fluxo superficial. (c) Canal	
de alimentação do banhado de fluxo superficial concluído.	
(d) Detalhe da brita 1 utilizada no banhado de fluxo	
subsuperficial. (e) Coleta de mudas de macrófitas em	
banhado natural, dentro do próprio aterro. (f) Começo do	
plantio das macrófitas no banhado de fluxo sub	
superficial	80
Figura 4.19. (a) Detalhe de uma muda de <i>Typha subulata.</i>	
(b) Mudas plantadas no banhado de fluxo subsuperficial.	
(c) Vista dos dois banhados em fase de aclimatação. (d)	
Vista da melhor adaptação das macrófitas no banhado de	
fluxo subsuperficial (ao fundo). (e) Transcorridos 4	
meses desde o plantio, o banhado de fluxo superficial	
indica a dificuldade de adaptação do <i>Scirpus</i>	
californicus	81
Figura 4.20. (a) No banhado de fluxo subsuperficial a boa adaptação da	
Typha, 6 meses após o seu plantio. (b) Entre as duas	
unidades, o autor deste trabalho, evidenciando a diferença	
na adaptação das plantas de um banhado com relação	
ao outro.	81
Figura 5.1. Indicação da eficiência prevista (em vermelho) para filtro	
anaeróbio de fluxo ascendente com TDH = 3,8 d, na remoção	
de matéria orgânica de lixiviado	88
Figura 5.2. DQO durante a Fase 1	89
Figura 5.3. DBO _{5,20} durante a Fase 1	89
Figura 5.4. COT durante a Fase 1	90
Figura 5.5. Eficiências médias na remoção de DQO	90
Figura 5.6. Eficiências médias na remoção de DBO _{5,20}	91

Figura 5.7.	Eficiências médias na remoção de COT	91
Figura 5.8.	Remoção de DBO no FAFA 01	95
Figura 5.9.	Remoção de DBO no FAFA 02	96
Figura 5.10.	Remoção de COT no FAFA 01	96
Figura 5.11.	Remoção de COT no FAFA 02	97
Figura 5.12.	Remoção de DQO no FAFA 01	97
Figura 5.13.	Remoção de DQO no FAFA 02	98
Figura 5.14.	Concentrações de N-amoniacal e de NTK no	
	lixiviado	108
Figura 5.15.	Vistas dos banhados, em agosto de 2007	111
Figura 5.16.	Vista das macrófitas do banhado de fluxo subsuperficial	
	durante o inverno	112
Figura 5.17.	Quatro amostras de lixiviado analisadas no Laboratório de	
	Saneamento da EESC, em	
	julho de 2007	112
Figura 5.18.	Amostra de lixiviado coletada na saída do banhado de fluxo	
	subsuperficial	113
Figura 5.19.	(a) Lixiviado coletado na parte inicial do banhado; (b)	
	Lixiviado coletado na parte central do banhado; (c)	
	Lixiviado coletado na saída do banhado	114

LISTA DE ANEXOS

Tabela A1.	Variáveis e metodologia analítica utilizada	125
Tabela A2.	Remoção de DBO na FASE 1 da pesquisa	127
Tabela A3.	Remoção de DQO na FASE 1 da pesquisa	130
Tabela A4.	Remoção de COT na FASE 1 da pesquisa	133
Tabela A5.	pH na FASE 1 da pesquisa	136
Tabela A6.	Nitrogênio amoniacal na FASE 1 da pesquisa	137
Tabela A7.	Sólidos totais na FASE 1 da pesquisa	139
Tabela A8.	Remoção de DBO no FAFA 01 na Fase 2 da	
	pesquisa	140
Tabela A9.	Remoção de DBO no FAFA 02 na Fase 2 da	
	pesquisa	141
Tabela A10.	Remoção de DQO no FAFA 01 na Fase 2 da	
	pesquisa	142
Tabela A11.	Remoção de DQO no FAFA 02 na Fase 2 da	
	pesquisa	143
Tabela A12.	Remoção de COT no FAFA 01 na Fase 2 da	
	pesquisa	144
Tabela A13.	Remoção de COT no FAFA 02 na Fase 2 da	
	pesquisa	145
Tabela A14.	Concentração de N-amoniacal nos FAFAs na Fase 2 da	
	pesquisa	146
Tabela A15.	Ácidos voláteis nos FAFAs na Fase 2 da pesquisa	147
Tabela A16.	Alcalinidade total nos FAFAs na Fase 2 da	
	pesquisa	148

Tabela A17. Bactérias heterotróficas nos FAFAs na Fase 2 da pesquisa	149
Tabela A18. Série de sólidos na Fase 2 da pesquisa	150
Tabela A19. pH na Fase 2 da pesquisa	151
Tabela A20. Temperatura do ar na Fase 2 da pesquisa	152
Tabela A21. Fosfato total na Fase 2 da pesquisa	153
Tabela A22. Sulfato na Fase 2 da pesquisa	154
Tabela A23. Metais pesados na Fase 2 da pesquisa	154
Tabela A24. Coliformes fecais na Fase 2 da pesquisa	155

LISTA DE SÍMBOLOS E SIGLAS

ABNT Associação Brasileira de Normas Técnicas

Ac.acético ácido acético

C carbono

CAG carvão ativado granular

CaCO₃ carbonato de cálcio

Cd cádmio

Ca(OH), hidróxido de cálcio (cal *extinta* ou cal *hidratada*)

CAP carvão ativado em pó

Cr cromo

CdS sulfeto de cádmio

CH₄ metano

CO₂ dióxido de carbono

CONAMA Conselho Nacional do Meio Ambiente

CONSEMA Conselho Estadual do Meio Ambiente

(Rio Grande do Sul)

COT carbono orgânico total

CRR Central de Resíduos do Recreio

d dia

D Daltons

 $\mathsf{DBO}_{\scriptscriptstyle{5,20}}$ demanda bioquímica de oxigênio, medida após 5 dias

sob temperatura de 20 °C

DBO_{5,20}/DQO relação entre demanda bioquímica de oxigênio e

demanda química de oxigênio

DBO_{5 20}:N:P relação entre demanda bioquímica de oxigênio,

nitrogênio e fósforo

DMLU Departamento Municipal de Limpeza Urbana de

Porto Alegre

DQO demanda química de oxigênio

ETE estação de tratamento de esgoto

EUA Estados Unidos da América

FAFA 01 filtro anaeróbio de fluxo ascendente número 1 FAFA 02 filtro anaeróbio de fluxo ascendente número 2

FEPAM Fundação Estadual de Proteção Ambiental

(Rio Grande do Sul)

FIBGE Fundação Instituto Brasileiro de Geografia e Estatística

FWS free water surface (superficie líquida livre)

h hora

ha hectare Hg mercúrio

 ${
m H_2S}$ ácido sulfídrico kcal quilocalorias

kN quiloNewtons

L litro

m metro

m² metro quadrado m³ metro cúbico

mA/cm² micro Ampère por centímetro quadrado

mg miligramas

min minuto mm milimetro N nitrogênio

N-amoniacal nitrogênio amoniacal NaOH hidróxido de sódio NBR Norma Brasileira ND não detectável

NH₃ amônia gasosa

NH₄ fon amônio

Ni níquel

Nm³ metro cúbico de gás nas condições normais de

temperatura e pressão

NMP/100 mL número mais provável por cem mililitros

 NO_2 ânion nitrito NO_3 ânion nitrato

NTK nitrogênio total de Kjeldahl

O₂ oxigênio molecular

°C graus Celsius

OR osmose reversa

P fósforo Pb chumbo

PE Pernambuco

PEAD polietileno de alta densidade

pH potencial hidrogeniônico

PO₄ ânion fosfato

PR Paraná

PVC cloreto de polivinila rpm rotações por minuto

RS Rio Grande do Sul RuO, dióxido de rutênio

s segundo

SABESP Companhia de Saneamento Básico de São Paulo

SBQ sistema de barreira bioquímica

SDT sólidos dissolvidos totais

SO₄²⁻ ânion sulfato

SSF sólidos suspensos fixos

SSV sólidos suspensos voláteis

SST sólidos suspensos totais

ST sólidos totais

STF sólidos totais fixos

STV sólidos totais voláteis

t toneladas

TDH tempo de detenção hidráulica

Ti titânio

TiO₂ dióxido de titânio

UFC unidades formadoras de colônias

ZnO óxido de zinco