NEW BUSINESS OPPORTUNITIES IN THE SUGAR‑ALCOHOL INDUSTRY: ALCOHOL CHEMISTRY AND BIOREFINERIES

Franco, Telma Teixeira ; Garzón, Camilo López

Resumo:

Biorefinery is an integrated process in which biomass is converted to higher added value products with zero or near zero net CO2 emissions. The biorefinery concept is based on the similar concept behind traditional petrochemical refineries and partially uses related transformation processes. However, the main value-adding technologies associated with biorefineries are more complex, offering a greatest potential given the huge variety and quantity of renewable biomass and derived products. In addition, the biorefinery provides the possibility to develop non-polluting and sustainable industries with low environmental impact. Historically, it is known that several processes, today included in the area of biorefinery, were already known since the 19th century, such as the saccharification of wood, solubilization of cellulose, sugar refinery, starch and maltodextrins for industrial purposes, vegetal oil and chlorophyll extraction, furfural production from bran distillation, isolation of vanillin from lignin (already developed in 1874) and lactic acid production by fermentation (KAMM et al., 2006). Different types of biomass are currently being used for the production of molecules for subsequent use in industrial processes, which can lead to gradual replacement of the petrochemical platform. Among them, building blocks had gained big interest; these are molecules with multiple functional groups, which can be converted into other molecular groups.

41 downloads

DOI: 10.5151/9788521208228-SUGARCANEBIOETHANOL_64

Referências bibliográficas
  • BOZELL, J. J. The use of renewable feedstocks for the production of chemicals and materials – A brief overview of concepts. National Renewable Energy Laboratory, 2004.
  • BRANCO, R. F.; SANTOS, J. C.; MURAKAMI, L.Y.; MUSSATO, S. I.; DRAGONE, G.; SILVA, S. S. Xylitol production in a bubble column bioreactor: Influence of the aeration rate and immobilized system concentration. Process Biochemistry, 42, 258-262, 2007.
  • DATTA, R.; HENRY, M. Lactic acid: recent advances in products, processes and technologies – a review. Journal of Chemical Technology and Biotechnology, 81, 1119-1129, 2006.  FINGUERUT, J. Workshop de hidrolise de bagaço e palha de cana para produção de etanol, CTC, 2006.
  • FRANCO, T. T. Industrial perspectives for bioethanol. Telma Teixeira Franco (Ed.), São Paulo: Editora Uniemp, ISBN 85-98951-06-4, 2006.
  • HAHN-HAGERDAL, B.; HIMMEL, M. E.; SOMERVILLE, C.; WYMAN, C. Welcome to biotechnology for fuels. Biotech.biofuels, 1:1,2008.
  • GIRISUTA, B. Levulinic acid from lignocellulosic biomass. Tese (Doutorado) – Universidade de Groningen, 2007.
  • JEFFRIES, T. W. Engineering yeasts for xylose metabolism, Current Opinion in Biotechnology, 17, 320-326, 2006.
  • KAMM, B.; KAMM, M. Principles of biorefineries, Applied Microbiology and Biotecnology, 64, 137-145, 2004.
  • KAMM, B.; KAMM, M.; SCHMIDT, M.; HIRTH, T.; SCHULZE, M. Chapter 3: Lignocellulose-based chemical products and product family trees, Biorefineries – Industrial Processes and Products, v. 2: Status quo and future directions, Wiley-VCH, 2006.
  • KAMM, B.; GRUBER, P. R.; KAMM, M. Biorefineries – Industrial Processes and Products, v. 1 e 2: Status quo and future directions, Wiley-VCH, 2006.
  • KRAUSMANN, F.; ERB, K.; GINGRICH, P. L. Global patterns of socioeconomic biomass flows in the year 2000. A comprehensive assessment of supply, consumption and constraints. Ecological economics, 65 (3) 471-487, 2008.
  • LUO, J.; XIA, L. M.; LIN, J. P.; CEN, P. L. Kinetics of simultâneous saccharification and lactic acid fermentation processes, Biotechnology Progress, 13(6), 762-767, 1997.
  • LYND, L. R.; GRETHLEIN, H. G.; WOLKIN, R. H. Fermentation of cellulosic substrates in batch and continuous culture by Clostridium thermocellum, Applied and Environmental Microbiology, 55, 3131-3139, 1989.
  • LYND, L. R.; WYMAN, C. E.; GERNGROSS, T. U. Biocommodity engineering, Biotechnology Progress, 15 (5), 777-793, 1999.
  • MARTINS, L.; CARDOSO, D. Produção de etilenoglicóis e derivados por reações catalíticas do óxido de eteno, Química Nova, 28 (2), 264-273, 2005.
  • MENEZES, C. R.; DURRANT, L. R. Xilooligossacarídeos: produção, aplicações e efeitos na saúde humana, Ciência Rural, 38(2), 587-592, 2008.
  • MUSSATO, S. I.; FERNANDES, M.; MANCILHA, I. M.; ROBERTO, I. C. Effects of médium supplementation and pH control on lactic acid production from brewer’s spent grain, Biochemical Engineering Journal, 40, 437-444, 2008.
  • OHARA, H. Biorefinery, Applied Microbiology and Biotechnology, 62, 474-477, 2003.
  • PANDEY, A.; SOCCOL, C. R.; NIGAM, P.; SOCCOL, V. Biotechnological potential of agro-industrial residues. I: sugarcane bagasse, Bioresource Technology, 74, 69-80, 2000.
  • SALES, F. G.; MARANHÃO, L.; FILHO, N. M.; ABREU, C. Experimental evaluation and continuous catalytic process for fine aldehyde production from lignin, Chemical Engineering Science, 62, 5836-5391, 2007.
  • SANTOS, D. T.; SARROUH, B. F.; RIVALDI, J. D.; CONVERTI, A.; SILVA, S. S. Use of sugarcane bagasse as biomaterial for cell inmobilization for xylitol production, Journal of food engineering, 86(4), 542-548, 2008.
  • SATYANARAYANA, K. G.; GUIMARÃES, J. L.; WYPYCH, F. Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications, Composites part A: applied science and manufacturing, 38, 1694-1709, 2007.
  • SHANMUGAM, K.; INGRAM, L. O; PATEL, M. A; OU, M. S.; HARBRUCKER, R. Novel isolated gram positive organism capable of producing L(+) lactic acid at high yield from hexose or pentose sugars, usefull for producing industrially useful chemicals. WO2005086670-A2; US2005250192-A1; us7098009-B2.
  • STRAATHOF, A. J.; SIE, S.; FRANCO, T. T.; VAN DER WIELEN, L. A. Feasibility of acrylic acid production by fermentation, Applied Microbiology and Biotechnology, 67, 727-734, 2005.
  • STUART, P. Identifying the Canadian forest biorefinery, PAPTAC Annual meeting, Montreal, 2006.
  • TAYLOR, G. Biofuels and the biorefinery concept, Energy Policy, 36, 4406-4409, 2008.
  • ROSSEL, C. E. V. Conversion of lignocellulose biomass (bagasse and straw) from the sugar-alcohol industry into bioethanol. Industrial perspectives for bioethanol. Telma Teixeira Franco (Ed.), São Paulo: Editora Uniemp, ISBN 85-98951-06-4, 2006.
  • U.S. NATIONAL RESEARCH COUNCIL (U.S. NRC). COMMITTEE ON BIOBASED INDUSTRIAL PRODUCTS, BOARD ON BIOLOGY, COMMISSION ON LIFE SCIENCES, Biobased industrial products: priorities for research and commercialization, 2000.
  • WERPI, T.; PETERSEN, G. Top value added chemicals from biomass, vol. I: results of screening for potential candidates from sugars and synthesis gas, Pacific Northwest National Laboratory and National Renewable Energy Laboratory, 2004.
  • ZOEBELIN, H. Dictionary of renewable resources, Wiley-VCH, Weinheim, 2001.
Como citar:

FRANCO, Telma Teixeira; GARZÓN, Camilo López; "NEW BUSINESS OPPORTUNITIES IN THE SUGAR‑ALCOHOL INDUSTRY: ALCOHOL CHEMISTRY AND BIOREFINERIES", p. 761-772. Sugarcane bioethanol — R&D for Productivity and Sustainability. São Paulo: Blucher, None.
ISBN: 9788521208228, DOI 10.5151/9788521208228-SUGARCANEBIOETHANOL_64