INSTRUMENTATION AND AUTOMATION IN THE SUGARCANE ETHANOL AGROINDUSTRY

Farinas, Cristiane Sanchez ; Neto, Ladislau Martin ; Giordano, Roberto Campos

Resumo:

Despite the technological advances of the sugarcane industry in recent decades, there are still several opportunities to optimize the process and increase productivity in ethanol producing plants This is because ethanol distilleries in Brazil have given low investment priority to process control and automation. This fact could be related both to a slowdown in ethanol production in the late 1990’s as well as poor understanding of the real benefits of implementing new technologies in the production process (ATALA, 2004). With current scenarios on expanding the international ethanol market, the use of ethanol in flex fuel engines and in the processing of biodiesel, in hydrogen fuel cells and other alternative energy sources, it is expected an increase of investments in both research and implementation of new technologies, together with the automation and control of the production process (ATALA, 2004).

25 downloads

DOI: 10.5151/9788521208228-SUGARCANEBIOETHANOL_54

Referências bibliográficas
  • ARIFEEN, N.; WANG, R.; KOOKOS, I. K.; WEBB, C.; KOUTINAS, A. A. Process Design and Optimization of Novel Wheat-Based Continuous Bioethanol Production System. Biotechnology Progress, v. 23, p. 1394-1403, 2007.
  • ATALA, D. I. P. Montagem, instrumentação, controle e desenvolvimento experimental de um processo fermentativo extrativo de produção de etanol. 2004. Tese (doutorado) – Universidade Estadual de Campinas. Faculdade de Engenharia de Alimentos, 2004.
  • ATALLA, R. H.; ISOGAI, A. Recent Developments in Spectroscopic and Chemical Characterization of Cellulose. In: S. DUMITRIU. Polysaccharides: structural diversity and functional versatility. 2 ed. Marcel Decker. p. 123-157. 1998.
  • BOLTON, J. R. Electron spin resonance theory. In: WEIL, J. A.; BOLTON, J. R. Electron paramagnetic resonance: elementary theory and practical applications. New York, Willey, cap. 1, p. 11-61, 1994.
  • BONOMI, A. 2008. XVII Workshop – Instrumentação e Automação Agrícola e Agroindustrial. Disponível em: Andlt;http://www.apta.sp.gov.br/cana/anexos/position_paper_instrumentacao_1_Bonomi.pdfAndgt;. Acesso em: 08 mar. 2009.
  • BRUGNOLLO, E. D.; PATERNO, L. G.; LEITE, F. L.; FONSECA, F. J.; CONSTANTINO, C. J. L.; ANTUNES, P. A.; MATTOSO, L. H. C. Fabrication and characterization of chemical sensors made from nanostructured films of poly(o-ethoxyaniline) prepared with different doping acids. Thin Solid Films, v. 516, p. 3274-3281, 2008.
  • CARDONA, C. A.; SANCHEZ, O. J. Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass. Energy, v. 31 (13), p. 2447-2459, 2006.
  • CARDONA, C.; SANCHEZ, O. 2004. Analysis of integrated flow sheets for biotechnological production of fuel ethanol. In: PRES 2004 – XVI International Congress of Chemical and Process Engineering (CHISA 2004), Prague, Czech Republic.
  • CARVALHO, E. R.; FILHO, N. C.; VENANCIO, E. C.; OSVALDO, N. O.; MATTOSO, L. H. C.; MARTIN-NETO, L. Detection of brominated by-products using a sensor array based on nanostructured thin films of conducting polymers. Sensors, v. 7, p. 3258-3271, 2007.
  • CARVALHO, E. R.; MARTIN-NETO, L.; MILORI, D. M. B. P. et al. Interactions of chlorine with tropical aquatic fulvic acids and formation of intermediates observed by fluorescence spectroscopy. J. Braz. Chem. Soc., v. 15, n. 3, p. 421-426, 2004.
  • CASTELLAN, A.; GRELIER, S.; KESSAB, L.; NOURMAMODE, A.; HANNACHI, Y. Photophysics and photochemistry of a lignin model molecule containing a-carbonyl guaiacyl and 4-hydroxy-3-methoxybenzyl alcohol moieties. J. Chem. Soc., Perkin Trans. 2, p. 1131-38, 1996.
  • CZECHOWSKI, F.; GOLONKA, I.; JEZIERSKI, A. Organic matter transformation in the environment investigated by quantitative electron paramagnetic resonance (EPR) spectroscopy: studies on lignins, Spectrochimica Acta. Part A, v. 60, 2004, p. 1387-1394.
  • EVELEIGH, D. E. Cellulase: a perspective. Phil. Trans. R. Soc. Lond. Ser. A. v. 321, p. 435-447, 1987.
  • FAIX, O. Holzforschung, 45, 21, 1991.
  • FAIX, O.; ANDERSONS, B.; ZAKIS, G. Determination of carbonyl groups of six round robin lignins by modified oximation and FTIR spectroscopy. Holzforschung, v. 52, 268-274, 1998.
  • FAIX, O.; BÖTTCHER, J. H. Holzforschung, 47, 45, 1991.
  • FELIPE, M. G. A. 2006. I Workshop – Produção de Etanol. Disponível em: Andlt;http://www.apta.sp.gov.br/cana/ver_work.php?work_id=41Andgt;. Acesso em: 08 mar. 2009.
  • FERREIRA, E. J.; PEREIRA, R. C. T.; DELBEM, A. C. B.; OLIVEIRA, O. N.; MATTOSO, L. H. C. Random subspace method for analysing coffee with electronic tongue. Electronics Letters, v. 43, p. 1138-1140, 2007.
  • FERREIRA, M.; RIUL, A.; WOHNRATH, K.; FONSECA, F. J.; OLIVEIRA, O. N.; MATTOSO, L. H. C. High-performance taste sensor made from Langmuir-Blodgett films of conducting polymers and a ruthenium complex. Analytical Chemistry, v. 75, p. 953-955, 2003.
  • FIALHO, L. L. Caracterização da matéria orgânica em processo de compostagem por métodos convencionais e espectroscópicos. 2007. 170 p. Tese (Doutorado) – Instituto de Química, Universidade de São Paulo, São Carlos, 2007.
  • FIALHO, L. L.; FRANCISCO, R. A.; SIMÕES, M. L.; DA SILVA, W. T. L.; MARTIN-NETO, L. Interferência da lignina na quantificação de radicais livres no processo de compostagem, VII Encontro Brasileiro de Substâncias Húmicas, Florianópolis, 40, 2007.
  • FITZPATRICK, J. D.; STEELINK, C. The origin of the paramagnetic species in lignin solutions. Autoreduction of 2,6-dimethoxybenzoquinone and related quinines to radical anions in alkaline solution, Journal of Organic Chemistry, v. 37, p. 762-767, 1972.
  • GALBE, M.; ZACCHI, G. Simulation of ethanol production processes based on enzymatic hydrolysis of woody biomass. Computers and Chemical Engineering 18 (suppl), p. S687-S691, 1994.
  • GARBIN, J. R. Estudos espectroscópicos da fotólise de pesticidas em água na presença de substâncias húmicas. 2004. 90 f. Tese (Doutorado em Ciência e Engenharia de Materiais). Interunidades (EESC/IFSC/IQSC) – Universidade de São Paulo, São Carlos, SP, 2004.
  • GONZÁLEZ-PÉREZ, M.; MARTIN-NETO, L.; SAAB, S. C.; NOVOTNY, E. H.; MILORI, D. M. B. P.; BAGNATO, V. S.; COLNAGO, L. A.; MELO, W. J.; KNICKER, H. Characterization of humic acids from a Brazilian Oxisol under different tillage systems by EPR, 13C NMR, FTIR and fluorescence spectroscopy. Geoderma, Amsterdam, v. 118, p. 181-190, 2004.
  • HAMES, B. R.; THOMAS, S. R.; SLUITER, A. D.; ROTH, C. J.; TEMPLETON, D. W. Rapid Biomass Analysis. Applied Biochemistry and Biotechnology, v. 105, p. 5-16, 2003.
  • HARMS, P.; KOSTOV, Y.; RAO, G. Bioprocess monitoring. Current Opinion in Biotechnology, 13, p. 124-127, 2002.
  • HÖLKER, U.; HÖFER, M.; LENZ, J. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology and Biotechnology, v. 64, p. 175-186, 2004.
  • HOLKER, U.; LENZ, J. Solid-state fermentation – are there any biotechnological advantages? Current Opinion in Microbiology, v. 8, p. 301-306, 2005.
  • KAMM, B.; GRUBER, P.; KAMM, M. Biorefineries – Industrial Processes and Products, vol. 1, Wiley-VCH, 2006.
  • KHAN, M. A.; ASHRAF, S. M. Studies on thermal characterization of lignin: Substituted phenol formaldehyde resin as wood adhesives. Journal of Thermal Analysis and Calorimetry, v. 89, p. 993-1000, 2007.
  • KHANAHMADI, M. et al., Bed moisture by monitoring of air stream temperature rise in packed-bed solid-state fermentation. Chemical Engineering Science, v. 61, p. 5654-5663, 2006.
  • KLEINERT, M.; BARTH, T. Towards a Lignincellulosic Biorefinery: Direct One-Step Conversion of Lignin to Hydrogen-Enriched Biofuel, Energy Andamp; Fuels, v. 22, p. 1371-1379, 2008.
  • KNAUF, M.; MONIRUZZAMAN, M. Lignocellulosic biomass processing: A perspective. International Sugar Journal, v. 106, n. 1263, p. 147-150, 2004.
  • LEE, D.; YU, A. H. C.; SADDLER, J. N. Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates. Biotechnology and Bioengineering, v. 45, p. 328-336, 1995.
  • LYND, L. R.; WYMAN, C. E.; GERNGROSS, T. U. Biocommodity engineering. Biotechnology Progress, v. 15, p. 777-793, 1999.
  • MACEDO, I. C. 2003. Estado da arte e tendências das tecnologias para energia. Disponível em: Andlt;http://www.finep.gov.br/fundos_setoriais/ct_energ/documentos/ct-energ03estado_arte.pdfAndgt;. Acesso em: 08 mar. 2009.
  • MARTIN-NETO, L.; ANDRIULO, A. E.; TRAGHETTA, D. G. Effects of cultivation on ESR spectra of organic matter from soil size fractions of a Mollisol, Soil Science, v. 157, p. 365-372, 1994.
  • MARTIN-NETO, L.; ROSSEL, R.; SPOSITO, G. Correlation of spectroscopic indicators of humification with mean annual rainfall along a temperate grassland climosequence. Geoderma, Amsterdam, v. 81, n. 3/4, p. 305-311, 1998.
  • MARTIN-NETO, L.; TRAGHETTA, D. G; VAZ, C. M. P.; CRESTANA, S.; SPOSITO, G. On the interaction mechanisms of atrazine and hydroxyatrazine with humic substances. Journal of Environmental Quality, v. 30, p. 520-525, 2001.
  • MARTIN-NETO, L.; VAZ, C. M. P.; CRESTANA, S. (editores) Instrumentação avançada em ciência do solo. Embrapa Instrumentação Agropecuária, São Carlos/SP, 2007. 438 p. ISBN: 85-86463-14-0.
  • MES-HARTREE, M.; HOGAN, C. M.; SADDLER, J. N. Recycle of enzymes and substrate following enzymatic hydrolysis of steam-pretreated aspenwood. Biotechnology and Bioengineering, v. 30, 558-564, 1987.  MILORI, D. M. B. P.; MARTIN-NETO, L.; BAYER, C.; MIELNICZUCK, J.; BAGNATO, V. S. Humification degree of soil humic acids determined by fluorescence spectroscopy. Soil Science, v. 167, n. 11, p. 739-749, 2002.
  • NAGEL, F-J. J. I. et al. Temperature control in a continuosly mixed bioreactor for solid-state fermentation. Biotechnology and Bioengineering, v. 72, n. 2, p. 219-230, 2001.
  • NAGLE, N.; IBSEN, K.; JENNINGS, E. A process economic approach to develop a dilute-acid cellulose hydrolysis process to produce ethanol from biomass. Applied Biochemistry and Biotechnology, v. 77-79, p. 595-607, 1999.
  • OGIER, J. C.; BALLERINI, D.; LEYGUE, J.-P.; RIGAL, L.; POURQUIÉ, J. Production d’éthanol à partir de biomasse lignocellulosique. Oil Gas Sci Technol, v. 54, n. 1, p. 67-94, 1999.
  • OLIVEIRA, A. B. Comunicação Pessoal. 2009.
  • PENA y LILLO, M. et al. Indirect measurement of water content in na aseptic solid substrate cultivation pilot-scale bioreactor. Biotechnology and Bioengineering, v. 76, n. 1, p. 44-51, 2001.
  • PINTO, G. A. Biorrefinaria de soro de queijo: engenharia de bioprocessos e sistemas aplicada à transformação de um resíduo poluente em produtos com valor agregado. 2008. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, 2008.
  • PINTO, G. A.; GIORDANO, R. L. C.; GIORDANO, R. C. Remote engineering for a cheese whey biorefinery: an Internet-based application for process design, economic analysis, monitoring, and control of multiple plant sites. Bioprocess and Biosystems Engineering, v. 32, p. 69-78, 2009.
  • PRESTON, C. M. Applications of NMR to soil organic matter analysis: history and prospects. Soil Science, v. 161, n. 3, p. 144-166, 1996.
  • RAHARDJO, Y. S. P.; TRAMPER, J.; RINZEMA, A. Modeling conversion and transport phenomena in solid-state fermentation: A review and perspectives. Biotechnology Advances, v. 24, p. 161-179, 2006.
  • RIUL, A.; MALMEGRIM, R. R.; FONSECA, F. J.; MATTOSO, L. H. C. An artificial taste sensor based on conducting polymers. Biosensors Andamp; Bioelectronics, v. 18, p. 1365-1369, 2003.
  • RUDNITSKAYA, A.; LEGIN, A. Sensor systems, electronic tongues and electronic noses, for the monitoring of biotechnological processes. Journal of Industrial Microbiology and Biotechnology, v. 35, p. 443-451, 2008.
  • SAAB, S. C.; CONCEIÇÃO, M.; MARTIN-NETO, L. Espectroscopia de FTIR e EPR em solos inteiros (gleissolos) e ácidos húmicos. In: Simpósio Nacional de Instrumentação Agropecuária, 2, 2000, São Carlos, SP. Anais do II Siagro. São Carlos, SP: Embrapa Instrumentação Agropecuária, 1998. p. 366-370.
  • SADHUKHAN, M. A.; MUSTAFA, N.; MISAILIDIS, F.; MATEOS-SALVADOR, C.; DU, G. M. Campbell Value analysis tool for feasibility studies of biorefineries integrated with value added production, J. Chemical Engineering Science, v. 63, p. 503-519, 2008.
  • SARGANTANIS, J. et al. Effect of operating conditions on solid substrate fermentation. Biotechnology and Bioengineering, v. 42, n. 2, p. 149-158, 1993.
  • SCHNITZER, M.; KHAN, S. U. Humic substances chemistry and reactions: soil organic matter. New York: Elsevier, p. 319, 1978.
  • SENDICH, E. D.; DALE, B. E.; KIM, S. Comparison of crop and animal simulation options for integration with the biorefinery, Biomass and Bioenergy, v. 32, p. 1162-1174, 2008.
  • SENESI, N. Application of electron spin resonance (ESR) spectroscopy in soil chemistry. Adv. Soil. Sci., v. 14, p. 77-130, 1990.
  • STEVENSON, F. J. Humus Chemistry: genesis, composition, reactions, 2. ed. New York: John Wiley, p. 496, 1994.
  • SUN, X. F.; XU, F.; SUN, R. C.; GENG, Z. C.; FOWLER, P.; BAIRD, M. S. Characteristics of degraded hemicellulosic polymers obtained from steam exploded wheat straw. Carbohydrate Polymers, v. 60, p. 15-26, 2005.
  • TUCKER, M. P.; NGUYEN, Q. A.; EDDY, F. P.; KADAM, K. L.; GEDVILAS, L. M.; WEBB, J. D. Fourier Transform Infrared Quantitative Analysis of Sugars and Lignin in Pretreated Softwood Solid Residues. Applied Biochemistry and Biotechnology, v. 91-93, p. 51-61, 2001.
  • UIHLEIN, A.; SCHEBEK, L. Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment, 2009.
  • VEALE, E. L.; IRUDAYARAJ, J.; DEMIRCI, A. An on-line approach to monitor ethanol fermentation using FTIR spectroscopy. Biotechnology Progress, v. 23, p. 494-500, 2007.
  • VOJINOVI, V.; CABRAL, J. M. S; FONSECA, L. P. Real-time bioprocess monitoring Part I: In situ sensors. Sensors and Actuators B, v. 114, p. 1083-1091, 2006.
  • WADA, M.; HEUX, L.; SUGIYAMA, J. Polymorphism of Cellulose I Family: Reinvestigation of Cellulose IV. Biomacromolecules, v. 5, p. 1385-1391, 2004.
  • WALKER, L. P.; WILSON, D. B. Enzymatic hydrolysis of cellulose: An Overview. Bioresouce Technology, v. 36, p. 3-14, 1991.  WEBER, F. J. et al. A simplified material and energy balance approach for process development and scale-up of coniothyrium minitans conidia production by solid-state cultivation in a packed-bed reactor. Biotechnology and Bioengineering, v. 65, n. 4, p. 447-458, 1999.
  • WOOLEY, R.; PUTSCHE, V. 1996. Development of an ASPEN PLUS Physical Property Database for Biofuels Components. National Renewable Energy Laboratory, Golden, CO, USA, 38 p.
  • WYMAN, C. E. Biomass ethanol: technical progress, opportunities, and commercial challenges. Annual Review of Energy and the Environment, v. 24, p. 189-226, 1999.
  • ZAKIS, G. L. Functional Analysis of Lignins and Their Derivatives. Tappi Press, Atlanta, GA, 1994.
Como citar:

FARINAS, Cristiane Sanchez; NETO, Ladislau Martin; GIORDANO, Roberto Campos; "INSTRUMENTATION AND AUTOMATION IN THE SUGARCANE ETHANOL AGROINDUSTRY", p. 601-618. Sugarcane bioethanol — R&D for Productivity and Sustainability. São Paulo: Blucher, None.
ISBN: 9788521208228, DOI 10.5151/9788521208228-SUGARCANEBIOETHANOL_54