Fisiologia Pacreática: Pâncreas Endócrino

Montenegro Jr., Renan ; Chaves, Mariana ; Fernandes, Virginia

Resumo:

O pâncreas é uma glândula retroperitoneal, lobulada, com peso entre 60 e 170g, medindo de 12 a 25cm. É dividido em três partes: cabeça (proximal), corpo e cauda (distal). A primeira encontra-se em íntimo contato com o duodeno, enquanto a última com o hilo esplênico efl exura cólica esquerda. O canal de Winsurg é um ducto excretório, o qual acompanha toda a extensão do pâncreas. Conecta-se ao duodeno através da ampola de Vater, onde se junta ao ducto biliar. O esfíncter de Oddi, juntamente com a ampola de Vater, regula a secreção pancreática no trato gastrointestinal.

Mais de 95% da massa pancreática corresponde a células exócrinas, agrupadas em lóbulos (ácinos). O ácinos estão conectados aos ductos pancreáticos, formando uma espécie de rede. As células acinares são responsáveis pela liberação de enzimas digestivas e outros componentes não enzimáticos (bicarbonato) no duodeno, para facilitar a digestão.As Ilhotas de Langerhans são responsáveis pela função endócrina do pâncreas. São agrupados de células, envolvidas por tecido exócrino, altamente vascularizados e inervados, compostos por vários tipos diferentes de células, sendo as principais: α, β, δ e células PP.

77 downloads

Sistema, digestório

DOI: 10.5151/9788580391893-20

Referências bibliográficas
  • ADEVA-ANDANY, M.M.; GONZÁLEZ-LUCÁN, M; DONAPETRY-GARCÍA,
  • C; FERNÁNDEZ-FERNÁNDEZ, C; AMENEIROS-RODRÍGUEZ, E. BBA
  • Clin. 5(27): 85–100, 2016. Adults: Challenges for researcher clinician and
  • patient. Rev. Endocr. Metab. Disord., Boston. 7: 171-185, 2006.
  • ARAÚJO, T. G.; OLIVEIRA, A. G.; SAAD, M. J. Insulin-resistance-associated
  • compensatory mechanisms of pancreatic beta cells: a current opinion. Front.
  • Endocrinol., Lausanne. 4: 146, 2013.
  • ASMAR, M. et al. GIP may enhance fatty acid re-esterifi cation in subcutaneous,
  • abdominal adipose tissue in lean humans. Diabetes, Alexandria (VA). 59(9):
  • 2160-2163, 2010.
  • BAGGIO L. L.; DRUCKER D. J. Biology of Incretins: GLP-1 and GIP.
  • Gastroenterology, Philadelphia (PA. 132(6): 2131-2157, 2007.
  • BALAGE M. et al. Amino acids and insulin are both required to regulate
  • assembly of the e IF4E eIF4G complex in rat skeletal muscle. Am. J. Physiol.
  • Endocrinol. Metab., Bethesda (MD). 281(3): E565-E574, set. 2001.
  • BELL, G. I. Molecular defects in diabetes mellitus. Diabetes, Alexandria (VA).
  • 40(4): 413-422, 1990.
  • BELL, G.L. et al. Structure and function of mammalian facultative sugar
  • transporters. J. Biol. Chem., Baltimore. 268(26): 19161-19164, 1993.
  • BEN-SHLOMO, S. et al. Glucagon-likepeptide-1reduceshepaticlipogenesisvia activation of AMP-activated protein kinase. J. Hepatol., Amsterdam. 54(6):
  • 1214-1223, 2011.
  • BERGMAN R. N.; ADER M. Free fatty acids and pathogenesis of type 2 diabetes
  • mellitus. Trends Endocrinol. Metab., New York. 11(9): 351-356, 2000.
  • BETA CELL BIOLOGY CONSORTIUM. Insulin-maturation. 2015. Disponível
  • em: <http://www.betacell.org/images/CMS/insulin-maturation_01_w500.
  • jpg>. Acesso em: 01 ago. 2016.
  • BOLLEN, M.; KEPPENS, S.; STALMANS, W. Specifi c features of glycogen
  • metabolism in the liver. Biochem. J., Londres. 336(1): 19-31, 1998.
  • BUGLIONI. A.; BURNETT, J. C. A gut-heart connection in cardiometabolic
  • regulation. Nature Medicine. 19: 534–536, 2013.
  • BURCELIN, R.; KATZ, E. B.; CHARRON, M. J. Molecular and cellular aspects
  • of the glucagon receptor: role in diabetes and metabolism. Diabetes Metab.,
  • Paris. 22(6): 373-396, 1996.
  • CARREL, G. ET AL. Contributions of fat and protein to the incretin effect of a
  • mixed meal. Am. J. Clin. Nutr., Bethesda (Md). 94(4): 997-1003, 2011.
  • CERNEA, S.; RAZ, I. Therapy in the early stage: incretins. Diabetes Care,
  • Alexandria (VA). 34(Sup. 2): S264-S271, 2011.
  • CESARETTI, M. L. R.; KOHLMANN JUNIOR, O. Modelos experimentais de
  • resistência à insulina e obesidade: lições aprendidas. Arq. Bras. Endocrinol.
  • Metab., São Paulo. 50(2): 190-197, 2006.
  • CNOP, M. et al. Mechanisms of pancreatic beta-cell death in type 1 and type
  • 2 diabetes: many differences, few similarities. Diabetes, Alexandria (VA).
  • 54(Sup. 2): S97-S107, 2005.
  • DEZAKI, K.; SONE, H.; YADA, T. Ghrelin is a physiological regulator of insulin
  • release in pancreatic islets and glucose homeostasis. Pharmacol. Ther.,
  • Oxford. 118(2): 239-249, 2008.
  • DING, X. et al. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/obmice. Hepatology, Philadelphia (PA). 43:
  • 173-181, 2006.
  • DRUCKER, D. J. Minireview: the glucagon-like peptides. Endocrinology.
  • Disponível em: <http://cnx.org/content/col11496/1.6/>. Acesso em: 01 ago.
  • 2016.
  • EKBERG, K. et al. A melioration of sensory nerve dysfunction by C-Peptide in
  • patients with type 1 diabetes. Diabetes, Alexandria (VA). 52(2): 536-541,
  • 2003.
  • FELIG, P.; SHERWIN, R. S. Carbohydrate homeostasis, liver and diabetes. Prog.
  • Liver Dis., New York. 5: 149-171, 1976.
  • FERRANNINI, E.; DEFRONZO, R. A. Insulin actions in vivo: glucose
  • metabolism. In: DEFRONZO, R. A. ET AL. International text book of diabetes
  • mellitus. Chichester (UK): John Wiley & Sons, 2004.
  • GERICH, J. E. et al. Renal gluconeogenesis. Its importance in human glucose
  • homeostasis. Diabetes Care, Alexandria (VA). 24: 382-391, 2001.
  • GONZALEZ-MUNOZ, C.; NIETO-CERON, S.; CABEZAS-HERRERA, J. et al. Glucagon increases contractility in ventricle but not in atrium of the rat
  • heart. Eur. J. Pharmacol., Amsterdam. 587(1-3): 243-247, 2008.
  • GUTZWILLER, J. P.; TSCHOPPS, B. ET AL. Glucagon-like peptide 1 induces
  • natriuresis in healthy subjects and in insulin-resistant obese men. J. Clin.
  • Endocrinol. Metab., Springfi eld. 89: 3055-3061, 2004.
  • HARTLEY, T.; BRUMELL, J.; VOLCHUK, A. Glucose stimulated insulin
  • biosynthesis and secretion in pancreatic β-cells. American Journal of
  • Physiology: Endocrinology and Metabolism, Bethesda (MD). 296(1): E1-
  • E10, 2008.
  • HIROSUMI, J.; TUNCMAN, G.; CHANG, L. ET AL. A central role for JNK in
  • obesity and insulin resistance. Nature, Londres. 420: 333-336, 2002.
  • HOTAMISLIGIL, G. S.; SHARGILL, N. S.; SPIEGELMAN, B. M. Adipose
  • expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science, Washington (DC). 259(5091): 87-91, 1993.
  • JAMESON J. L.; GROOT, L. J. Endocrinology: adult and pediatric. 6. ed.
  • Philadelphia: Saunders, 2010.
  • JIANG, G.; ZHANG, B. B. Targeting β-Cell Mass in Type 2 Diabetes: Promise
  • and Limitations of New Drugs Based on Incretins. American Journal of
  • Physiology - Endocrinology and Metabolism. 284(4): 671-678, 2003.
  • KAHN, C. R. et al. Joslin’s diabetes mellitus. 14. ed. Porto Alegre: Artmed, 2005.
  • LANDAU, B. R. et al. Contributions of gluconeogenesis to glucose production in
  • the fasted state. J. Clin. Invest., Ann Arbor (MI). 98: 378-385, 1996.
  • LINGERLAND, A. S. Monogenic diabetes in children and young. Rev. Endocr.
  • Metab. Disord. 7(3): 171–185, 2006.
  • MACHADOU. F. Transportadores de glicose. Arq. Bras. Endocrinol. Metab., São
  • Paulo. 42(6): 413-421, 1998.
  • MASSILLON, D.; BARZAILAI, N.; HAWKINS, M. et al. Induction of hepatic
  • G-6-Pase gene expression by lipid infusion. Diabetes, Alexandria (VA). 46:
  • 153-157, 1997.
  • MCINTOSH, C. H.; WIDENMAIER, S.; KIM, S. J. Glucose-dependent
  • insulinotropic polypeptide (Gastric Inhibitory Polypeptide; GIP). Vitam.
  • Horm., New York. 80: 409-471, 2009.
  • MEIER, J. J. et al. Glucagon-like peptide 1 abolishes the postprandial rise in
  • triglyceride concentrations and lowers levels of non- esterifi ed fatty acids in
  • humans. Diabetologia, Berlim. 49: 452-458, 2006.
  • MOLLER, D. E.; FLIER, J. S. Insulin resistance--mechanisms, syndromes, and
  • implications. N. Engl. J. Med., Boston. 325(13): 938-948, 1991.
  • NAKAMOTO, H. et al. Synergistic effects of C-peptide and insulin on coronary
  • fl ow in early diabetic rats. Metabolism, Duluth (MN). 53(3): 335-339, 2004.
  • NAUCK, M. A.; HEIMESAAT, M. M.; BEHLE, K. et al. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions,
  • and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp
  • experiments in healthy volunteers. J. Clin. Endocrinol. Metab., Springfi eld.
  • 87: 1239-1246, 2002.
  • NAUCK, M. A. et al. Preserved incretin activity of glucagon-likepeptide1[7-
  • 36amide] but not of synthetic human gastric inhibitory polypeptide in
  • patients with type-2 diabetes mellitus. J. Clin. Invest., Ann Arbor (MI). 91(1):
  • 301-307, 1993.
  • NIKOLAIDIS, L. A.; MANKAD. S.; SOKOS, G. G. et al. Effects of glucagon-like
  • peptide-1 in patients with acute myocardial infarction and left ventricular
  • dysfunction after successful reperfusion. Circulation, Dallas (TX). 109: 962-
  • 965, 2004.
  • NOLAN, C. J; PRENTKI, M. Islet beta cell failure in type 2 diabetes. J. Clin.
  • Invest. 116: 1802-1812, 2006.
  • NOMURA, M. et al. A mathematical insulin-secretion model and its validation
  • in isolated rat pancreatic islets perifusion. Comput. Biomed. Res., New York.
  • 17(6): 570-579, 1984.
  • OPENSTAX COLLEGE. Illustration from Anatomy & Physiology. 2013.
  • Disponível em: <http://cnx.org/content/col11496/1.6/>. Acesso em: 01 ago.
  • 2016.
  • PARKER, H. E.; REIMANN, F.; GRIBBLE, F. M. Molecular mechanisms
  • under lying nutrient stimulated incretin secretion. Expert Rev. Mol. Med.,
  • Cambridge (UK). 12: e1, 2010
  • PESSIN, J. E.; SALTIEL, A. R. Signaling pathways in insulin action: molecular
  • targets of insulin resistance. J. Clin. Invest., Ann Arbor (MI). 106(2): 165-
  • 169, 2000.
  • PRENTKI, M.; NOLAN, C. J. Islet beta cell failure in type 2 diabetes. J. Clin.
  • Invest., Ann Arbor (MI). 116: 1802-1812, 2006.
  • REIMANN, F.; WARD P.; GRIBBLE F. Signaling mechanisms underlying the
  • release of glucagon-like peptide1. Diabetes, Alexandria (VA). 55(Sup. 2): S78-S85, 2006.
  • ROCCA, A. S.; BRUBAKER, P. L. Role of the vagus nerve in media ting proximal
  • nutrient-induced glucagon-like peptide-1 secretion. Endocrinology, Baltimore
  • (MD). 140: 1687-1694, 1999.
  • ROTHMAN, D. L. et al. Quantitation of hepatic glycogenolysis and
  • gluconeogenesis in fasting humans with NMR. Science, Washington (DC).
  • 245: 573-576, 1991.
  • SALEHI, M.; AULINGER, B. A.; D'ALESSIO, D. A. Targeting β-Cell Mass in
  • Type 2 Diabetes: Promise and Limitations of New Drugs Based on Incretins.
  • Endocrine Reviews. 29(3): 367-379, 2008.
  • SALTIEL, A. R.; KAHN, C. R. Insulin signalling and the regulation of glucose and
  • lipid metabolism. Nature, Londres. 414(6865): 799-806, 2001.
  • SAMNEGARD, B. et al. C-peptide and captopril are equally effective in lowering
  • glomerularhy perfi l tration in diabetic rats. Nephrol. Dial. Transplant, Berlim;
  • New York. 19(6): 1385-1391, 2004.
  • SANGER, F. The chemistry of insulin. Nobel Lecture, 1958. Disponível em:
  • <http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1958/sangerlecture.
  • pdf>. Acesso em: 01 ago. 2016.
  • SEINO, Y.; FUKUSHIMA, M.; YABE, D. GIP and GLP-1, the two incretin
  • hormones: Similarities and differences. J. Diabetes Investig., Tokyo. 1(1-2):
  • 8-23, 2010.
  • THORENS, B.; CHARRON, M. J.; LODISH, H. F. Molecular physiology of
  • glucose transporters. Diabetes Care, Alexandria (VA). 13(3): 209-218, 1990.
  • VEGA-MONROY, M. L. L.; FERNANDEZ-MEJIA, C. Beta-cell function and
  • failure in type 1 diabetes. In: WAGNER, D. (ed.). Type 1 Diabetes - Pathogenesis,
  • Genetics and Immunotherapy. Rijeka: InTech, 2011. Disponível em: <http://
  • www.intechopen.com/books/type-1-diabetes-pathogenesis-genetics-andimmunotherapy/
  • beta-cell-function-and-failure-in-type-1-diabetes>. Acesso
  • em: 01 ago. 2016.
  • WAHREN, J. et al. Role of C-peptide in human physiology. Am. J. Physiol.
  • Endocrinol. Metab., Bethesda (MD). 278(5): E759-E768, 2000.
  • WAREN, J. et al. Splanchnic and peripheral glucose and amino acid metabolism
  • in diabetes mellitus. J. Clin. Invest., Ann Arbor (MI). 51: 1870-1878, 1972.
  • WIERUP, N.; SUNDLER, F.; HELLER, R. S. The islet ghrelin cell. J. Mol.
  • Endocrinol., Bristol. 52(1): R35-R49, 2013.
  • XU, H. et al. Chronic infl ammation in fat plays a crucial role in the development
  • of obesity-related insulin resistance. J. Clin. Invest., Ann Arbor (MI). 112(12):
  • 1821-1830, 2003.
  • YI, P.; PARK, J. S.; MELTON, D. A. Betatrophin: a hormone that Controls
  • Pancreatic β Cell Proliferation. Cell, Cambridge (Ma). 153(4): 747-758,
  • 2013.
  • ZECCHIN, H. G.; CARVALHEIRA, J. B. C.; SAAD, M. J. A. Mecanismos
  • moleculares de resistência à insulina na síndrome metabólica. Rev. Soc.
  • Cardiol. Estado de São Paulo. 14(4): 574-589, 2004.
Como citar:

MONTENEGRO JR., Renan; CHAVES, Mariana; FERNANDES, Virginia; "Fisiologia Pacreática: Pâncreas Endócrino", p. 523-574. Sistema digestório: integração básico-clínica. São Paulo: Blucher, 2016.
ISBN: 9788580391893, DOI 10.5151/9788580391893-20