THE NEED FOR BASIC RESEARCH IN THE SUGARCANE/ETHANOL PRODUCTION CYCLE

Lima, Marco Aurélio Pinheiro; Natalense, Alexandra Pardo Policastro;

Resumo:

Brazil does not usually create its own technological agenda. With some exceptions, such as the deep sea oil exploration developed by Petrobras[1] and the Complete Brazilian Space Mission[2], the scientific development of the country is directed to attend the technological demands imposed by other countries, especially the most developed. Identifying a clear and well defined goal is an interesting strategy to guide the scientific and technological development needed to achieve this mission. Actually, this development can produce several results in different areas, which may seem very diverse from the original goal, at a first glance. For instance, several examples could be cited as consequences of the Nasa’s space program[3], such as the development of infrared auricular thermometers, solar cells, radial tires improvement, fire sensors etc. Nowadays, the need for mitigating greenhouse gas emissions, such as CO2, has become a global challenge. One of the many ways for contributing to this task is to reduce the use of fossil fuels by replacing them for biofuels obtained from renewable sources. In this sense, Brazil was the first country to use fuel ethanol in automobiles un large scale after the National Alcohol Program – Proalcool in 1975, and has also a privileged position in the world’s scenario with the recently developed flex fuel engines.

Part 1 — Public Policy Strategies for Ethanol in Brazil :

Palavras-chave: ,

DOI: 10.5151/BlucherOA-Sugarcane-SUGARCANEBIOETHANOL_18

Referências bibliográficas
  • 1. Available at: Andlt;www.petrobras.comAndgt;.
    2. Available at: Andlt;www.aeb.gov.brAndgt;.
    3. Available at: Andlt;www.nasa.gov/topics/nasalife/index.htmlAndgt;.
    4. National Geographic, October, 38 (2007).
    5. Available at: Andlt;www.sugarcanecrops.com/p/introductionAndgt;.
    6. FAO, 2008.
    7. Estudo coordenado por R. C. de C. Leite, com a participação de vários pesquisadores do Núcleo Interdisciplinar de Planejamento Estratégico – NIPE/UNICAMP, com apoio financeiro do CGEE – Centro de Gestão e Estudos Estratégicos.
    8. GALBE, M.; ZACCHI, G. Appl. Microbiol. Biotechnol 59, 618 (2002).
    9. SILVA, L. F.; TACIRO, M. K.; RAMOS, M. E. M.; J. M. CARTER; PRADELLA, J. G. C.; GOMEZ, J. G. C. J. Ind. Microbiol. Biotechnol 31, 245 (2004).
    10. Manual dos derivados da cana-de-açúcar: diversificação, matérias-primas, derivados do bagaço, derivadosdo melaço, outros derivados, resíduos, energia – Brasília – Abipti, capítulo 2.3, p. 37 (1999).
    11. GOMEZ, E. O.; SQUINA, F. M., private communication.
    12. CHANDRA, R. P.; BURA, R.; MABEE, W. E.; BERLIN, A.; PAN, X.; SADDLER, J. N. Adv. Biochem Engin/Biotechnol 108, 67 (2007).
    13. HAMELINCK, C. N.; VAN HOOIJDONK, G.; FAAIJ, A. P. C. Biomass and Bioenergy 28, 384 (2005).
    14. BOUDAÏFFA, B.; CLOUTIER, P.; HUNTING, D.; HUELS, M. A.; SANCHE, L. Science, 287, 1658 (2000); SANCHE, L. Eur. Phys. J. D, 35, 367 (2005); MARTIN, F.; BURROW, P. D.; CAI, Z.; CLOUTIER, P.; HUNTING, D.; SANCHE, L. Phys. Rev. Lett. 93, 068101 (2004).
    15. WINSTEAD, C.; MCKOY, V. J. Chem. Phys. 125, 074302 (2006); BOUCHIHA, D.; GORFINKIEL, J. D.; CARON, L. G.; SANCHE, L. J. Phys. B 39, 975 (2006); RESCIGNO, T. N.; TREVISAN, C. S.; OREL, A. E. Phys. Rev. Lett. 96, 213201 (2006); ALLAN, M. J. Phys. B, 39, 2939 (2006); BETTEGA, M. H. F.; LIMA, M. A. P. J. Chem. Phys. 126, 194317 (2007) e referências citadas.
    16. Available at: Andlt;www.iac.sp.gov.br/centros/centrocana/principal.htmAndgt;.
    17. Available at: Andlt;www.ridesa.org.br/mgenetico.htmAndgt;.
    18. Available at: Andlt;www.ctcanavieira.com.br/index.php?option=com_contentAndamp;task=viewAndamp;id=46Andamp;Itemid=Andgt;.
    19. JACKSON, P. A. Field Crops Research 92, 277 (2005).
    20. McCORMICK, A. J.; CRAMER, M. D.; WATT, D. A. J. of Plant Physiol 165, 1817 (2008).
    21. McCORMICK, A. J.; CRAMER, M. D.; WATT D. A. Annals of Botany 101, 89 (2008).
    22. LEDON, A. C.; GONZALES, F. A. Z. Proc. Cuban Sugar Technol 24, 563 (1950).
    23. BARET, P.; CESARI, M.; QUEIROZ, C.; ROUCH, C.; MEUNIER, J. C.; CADET, F.; ACAD, C. R. Sci. Paris, Sciences de la Vie/Life Sciences, 322, 29 (1999).
    24. DU, Y. C.; NOSE, A.; WASANO, K.; UCHIDA, Y. Aust. J. Plant Physiol 25, 253 (1998)
    25. GLAZ, B.; MORRIS, D. R.; DAROUB, S. H. Crop. Sci. 44, 1633 (2004).
    26. MAGALHÃES, P. S. G.; BALDO, R. F. G.; CERRI, D. G. P. System of Synchronism Between Sugarcane Harvest Machine And Infield Wagon, Engenharia Agrícola, 28, 274-282 (2008).
    27. GRAY, G. R.; MAGALHÃES, P. S. G.; BRAUNBECK, O. A. Suspensão pantográfica para corte de cana-de-açúcar, Ciência Rural, Santa Maria, Online, ISSN 0103-8478.
    28. Agência Nacional de Águas – ANA, 2006.
    29. Revista Canavieiros, mar. 2007 – Marcelo Felício, Eng. Agr. Canaoeste.
Como citar:

LIMA, Marco Aurélio Pinheiro; NATALENSE, Alexandra Pardo Policastro; "THE NEED FOR BASIC RESEARCH IN THE SUGARCANE/ETHANOL PRODUCTION CYCLE", p. 151 -156. In: Sugarcane bioethanol — R&D for Productivity and Sustainability. São Paulo: Blucher, .
ISBN: 978-85-212-0822-8, DOI 10.5151/BlucherOA-Sugarcane-SUGARCANEBIOETHANOL_18