TECHNOLOGY OPTIONS FOR THE FUTURE SUGARCANE BIOREFINERIES

Seabra, Joaquim E. A.; Macedo, Isaías Carvalho;

Resumo:

A biorefinery can be defined as an integrated complex that makes a variety of products (liquid fuels, chemicals, electricity or steam) from a variety of feedstocks (Ondrey, 2006); it may be more efficient regarding thermodynamics, economics and the environmental aspects. Ragauskas et al. (2006) present a comprehensive discussion on the concepts and possibilities involving biorefineries, focused on the optimized options for biomass utilization for the sustainable production of energy, fuels and materials in both short and long term. With such goal, considerable governmental and private investments have been made in the last year (Genencor, 2003; Oils and Fats International, 2005; Ondrey, 2006), rising the expectation for commercial competitive plants in a short time horizon. Some analyses of hypothetical biorefineries have been presented, considering the employment of advanced technologies in their mature context. Lynd et al. (2005), based on ligno-cellulosic biomass, considered the future co-production of electricity, Fischer-Tropsch (FT) fuels and hydrogen, as well as scenarios for co-production of ethanolelectricity, ethanol-electricity-FT fuels, ethanolhydrogen, and other combinations of products and protein. In this analysis, some scenarios presented energy efficiencies greater than 70%, and economical competitiveness with conventional process based on oil prices of recent years.

Part 4 — A new Model for Industrial Production and final uses of ethanol :

Palavras-chave: ,

DOI: 10.5151/BlucherOA-Sugarcane-SUGARCANEBIOETHANOL_65

Referências bibliográficas
  • Carvalho, E.P. Perspectivas da agroenergia. Em: Seminário BMAndamp;F perspectivas para o Agribusiness em 2007 e 2008. São Paulo, SP, Abril de 2007.
    Consonni, S.; Larson, E.D. Biomass-gasifier/aeroderivative gas turbine combined cycles: Part A – Technologies and performance modeling. Journal of Engineering for Gas Turbines and Power, v. 118, pp. 507-515, July 1996a.
    Consonni, S.; Larson, E.D. Biomass-gasifier/aeroderivative gas turbine combined cycles: Part B – Performance calculations and economic assessment. Journal of Engineering for Gas Turbines and Power, v. 118, pp. 516-525, July 1996b.
    Genencor International Inc. Website: http://www.genencor.com (8 Sep 2003). In: Focus on Catalysts, pp. 3-4, November 2003.
    Jin, H.; Larson, E.D.; Celik, F.E. Performance and Cost Analysis of Future, Commercially-Mature Gasification-Based Electric Power Generation from Switchgrass. Draft Manuscript to Biomass and Bioenergy, November, 2006.
    Larson, E.D.; Jin, H.; Celik, F.E. Large-Scale Gasification-Based Co-Production of Fuels and Electricity from Switchgrass. Draft Manuscript to Biomass and Bioenergy, March, 2006.
    Lynd, L.R.; van Zyl, W.H.; McBride, J.E.; Laser, M. Consolidated bioprocessing of cellulosic biomass: an update. Current Opinion in Biotechnology, v. 16, pp. 577-583, 2005.
    Macedo, I.C. The sugarcane agro-industry and its contribution to reducing CO2 emissions in Brazil. Biomass and Bioenergy, v. 3(2), pp. 77-80, 1992.
    Macedo, I.C.; Leal, M.R.L.V.; da Silva, J.E.A.R. Balanço das emissões de gases do efeito estufa na produção e no uso do etanol no Brasil. Secretaria do Meio Ambiente, Governo de São Paulo. 19 pp + anexos. Abril de 2004.
    Macedo, I.C.; Macedo, G.A. Novos produtos da sacarose. Relatório reservado. Campinas, 2005.
    Macedo, I.C.; Nogueira, L.A.H. Balanço de Energia na produção de açúcar e álcool nas usinas cooperadas. Boletim técnico Copersucar, 31/85; pp. 22-27, 1985.
    Macedo, I.C., Seabra, J.E.A., Silva, J.E.A.R. Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. Biomass and Bioenergy, Vol. 32, Issue 7, July 2008, pp. 582-595.
    Ministério da Agricultura, Pecuária e Abastecimento (MAPA). Anuário estatístico da agroenergia. Secretaria de Produção e Agroenergia, MAPA, Brasília, 2009. 160p.  Oils and Fats International, Nov 2005, 21 (6), 10. In: Focus on Catalysts, p. 4, January 2006.
    Ondrey, G. The path to biorefineries. Chemical Engineering, v.113, Iss. 4; pp. 27, 3p. New York: Apr 2006.
    Phillips, S.; Aden, A.; Jechura, J.; Dayton, D.; Eggeman, T. Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass. Technical report TP-510-41168, NREL, Golden, CO, USA; April 2007.
    Ragauskas, A.J.; Williams, C.K.; Davison, B.H.; Britovsek, G.; Cairney, J.; Eckert, C.A.; Frederick Jr., W.J.; Hallett, J.P.; Leak, D.J.; Liotta, C.L.; Mielenz, J.R.; Murphy, R.; Templer, R.; Tschaplinski, T. The path forward for biofuels and biomaterials. Science, v. 311, pp. 484-489, 27 January 2006.
    Seabra, J.E.A. Avaliação técnico-econômica de opções para o aproveitamento integral da biomassa de cana no Brasil, Campinas, Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, 2008. 274p. Tese (doutorado).
    Silva, J.G.; Serra, G.E.; Moreira, J.R.; Gonçalves, J.C.; Goldemberg, J. Energy balance for ethyl alcohol production from crops. Science, v. 201, n. 4359, pp. 903-906, 8 September 1978.
    Werpy, T.A.; Hollaway, J.E.; White, J.F.; Peterson, G; Bozell, J.; Aden, A.; Manheim, A. Top Value Added Chemicals from Biomass. Oral Presentation 4-06, The 27th Symposium on Biotechnology for Fuels, Golden, Colorado, 2005.
    Zuurbier P.; van de Vooren J. (editors). Sugarcane ethanol: Contributions to climate change mitigation and the environment. Wageningen Academic Publishers, The Netherlands, 2008. 255 p.
Como citar:

SEABRA, Joaquim E. A.; MACEDO, Isaías Carvalho; "TECHNOLOGY OPTIONS FOR THE FUTURE SUGARCANE BIOREFINERIES", p. 773 -784. In: Sugarcane bioethanol — R&D for Productivity and Sustainability. São Paulo: Blucher, .
ISBN: 978-85-212-0822-8, DOI 10.5151/BlucherOA-Sugarcane-SUGARCANEBIOETHANOL_65