Fisiologia da Barreira Epitelial Intestinal

Rodrigues, Francisco Adelvane de Paulo; Medeiros, Pedro Henrique Quintela Soares de ; Prata, Mara de Moura Gondim; Lima, Aldo Ângelo Moreira;

Resumo:

A busca sobre o entendimento e a classifi cação do funcionamento das células intestinais é algo constante e não recente. Os primeiros reportes sobre a existência de uma confi guração celular, a qual propiciava funções especializadas, tal como a função de barreira morfofuncional intestinal é encontrada na literatura médica ao final do século 19. Subsequentemente, na primeira metade do século 20, essa função foi extensivamente estudada por técnicas associadas à investigação do transporte iônico.

0:

Palavras-chave: ,

DOI: 10.5151/9788580391893-18

Referências bibliográficas
  • ANDERSON, J. M.; ITALLIE, C. M. V. Physiology and Function of the Tight Junction. Cold Spring Harbor Perspectives in Biology. 1: 1-16, 2009.
    ITALLIE, C. V. W.; ANDERSON, J. M. American Physiological Society. 19: 331-338, 2004.
    TAMURA, A.; TSUKITA, S. Paracellular barrier and channel functions of TJ claudins in organizing biological systems: Advances in the fi eld of barriology revealed in knockout mice. Seminars in Cell & Developmental Biology. 36: 177–185, 2014.
    MARTÍNEZ, C.; GONZÁLEZ-CASTRO, A.; VICARIO, M.; SANTO, J. Cellular and Molecular Basis of Intestinal Barrier Dysfunction in the Irritable Bowel Syndrome. Gut and Liver. 305-315, 2012.
    TUNER, J. R. Intestinal mucosal barrier function in health and disease. Nature Reviews Immunology. 9: 799-809, 2009.
    RADTKE, F.; CLEVERS, H. Self-Renewal and Cancer of the Gut: Two Sides of a Coin. Science. 25: 1905-1908, 2005.
    TAMURA, A.; TSUKITA, S. Paracellular barrier and channel functions of TJ claudins in organizing biological systems: Advances in the fi eld of barriology revealed in knockout mice. Seminars in Cell & Developmental Biology. 36: 177–185, 2014.
    SUZUKI, T. Regulation of intestinal epithelial permeability by tight junctions. Cellular and Molecular Life Sciences. 70: 631-659, 2013.
    TAMURA, A.; HAYASHI, H.; IMASATO, M.; YAMAZAKI, Y.; HAGIWARA, A. ET AL. Loss of Claudin-15, but Not Claudin-2, Causes Na Defi ciency and Glucose Malabsorption in Mouse Small Intestine. Gastroenterology. 140: 913–923, 2011.
    WADA, M.; TAMURA, A.; TAKAHASHI, N.; TSUKITA, S. Loss of Claudins 2 and 15 From Mice Causes Defects in Paracellular Na+ Flow and NutrientTransport in Gut and Leads to Death from Malnutrition. Gastroenterology. 144: 369- 380, 2013.
    ARRIETA, M. C.; BISTRITZ, L.; MEDDINGS, J. B. Alterations in Intestinal Permeability. Gut. 55: 1512-1520, 2006.
    NATIVIDAD, J. M. M.; VERDU, E. F. Modulation of intestinal barrier by intestinal microbiota: Pathological and therapeutic implications. Pharmacological Research. 69: 42-51, 2013.
    PETERSON, L. W.; ARTIS, D. Intestinal epithelial cells: regulators of barrier function and imune homeostasis. Nature Reviews Immunology. 14: 141- 153, 2014.
    CARICILLI, A. M.; CASTOLDI, A.; CÂMARA, N. O. S. Intestinal barrier: A gentlemen’s agreement between microbiota and immunity. World Journal of Gastrointestinal Pathophysiology. 5: 18-32, 2014.
    KEITA, A. V.; SODERHOLM, J. D. The intestinal barrier and its regulation by neuroimmune factors. Neurogastroenterology & Motiliy. 22: 718-733, 2010.
    NATIVIDAD, J. M. M.; VERDU, E. F. Modulation of intestinal barrier by intestinal microbiota: Pathological and therapeutic implications. Pharmacological Research. 69: 42-51, 2013.
    BARBOSA-JUNIOR, M. S.; SILVA, T. M. J.; GUERRANT, R.; LIMA, A. A. M. Measurement of intestinal permeability using mannitol and lactulose in children with diarrheal diseases. Brazilian Journal of Medical and Biological Research. 32: 1499-1504, 1999.
    BRENCHLEY, J. M.; DOUEK, D. C. Microbial translocation across the GI tract. Annual Review of Immunology. 30: 149-73, 2012.
    CHEVALIER, M. F.; PETITJEAN, G.; DUNYACH-REMY, C.; DIDIER, C.; GIRARD, P. M. ET AL. The Th17/Treg ratio, IL-1RA and sCD14 levels in primary HIV infection predict the T-cell activation set point in the absence of systemic microbial translocation. PLoS Pathogens. 9: e1003453, 2013.
    DE VILLIERS, W. J.; VARILEK, G. W.; DE BEER, F. C.; GUO, J. T.; KINDY, M. S. Increased serum amyloid a levels refl ect colitis severity and precede amyloid formation in IL-2 knockout mice. Cytokine. 12: 1337-47, 2000.
    FORSYTH, C. B.; SHANNON, K. M.; KORDOWER, J. H.; VOIGT, R. M.; SHAIKH, M. ET AL. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PloS One. 6: e28032, 2011.
    ISKANDAR, H. N.; CIORBA, M. A. Biomarkers in infl ammatory bowel disease: current practices and recent advances. Translational Research. 313- 325, 2012.
    JUNG, S. Y.; PARK, Y. B.; HA, Y. J.; LEE, K. H.; LEE, S. K. Serum calprotectin as a marker for disease activity and severity in adult-onset Still’s disease. J. Rheumatol. 37: 1029-34, 2010.
    MAYNERIS-PERXACHS, J.; LIMA, A. A.; GUERRANT, R. L.; LEITE, A. M.; MOURA. A. F. ET AL. Urinary N-methylnicotinamide and β-aminoisobutyric acid predict catch-up growth in undernourished Brazilian children. Sci. Rep. 6: 19780, 2016.
    NANCEY, S.; BOSCHETTI, G.; MOUSSATA, D.; COTTE, E.; PEYRAS, J. ET AL. Neopterin is a novel reliable fecal marker as accurate as calprotectin for predicting endoscopic disease activity in patients with infl ammatory bowel diseases. Infl ammatory Bowel Diseases. 19: 1043-52, 2013.
    PELSERS, M. M.; NAMIOT, Z.; KISIELEWSKI, W.; NAMIOT, A.; JANUSZKIEWICZ, M. ET AL. Intestinal-type and liver-type fatty acidbinding protein in the intestine. Tissue distribution and clinical utility. Clin. Biochem. 36: 529-35, 2003.
    PETERSON, K. M.; BUSS, J.; EASLEY, R.; YANG, Z.; KORPE, P. S. ET AL. REG1B as a predictor of childhood stunting in Bangladesh and Peru. The American Journal of Clinical Nutrition. 9: 1129-33, 2013.
    REISINGER, K. W.; KRAMER, B. W.; VAN DER ZEE, D. C.; BROUWERS, H. A.; BUURMAN, W. A. ET AL. Non-invasive serum amyloid A (SAA) measurement and plasma platelets for accurate prediction of surgical intervention in severe necrotizing enterocolitis (NEC). PLoS One. 9: 90834, 2014.
    TURKAY, C.; KASAPOGLU, B. Noninvasive methods in evaluation of infl ammatory bowel disease: where do we stand now? An update. Clinics. 65: 221-31, 2010.
    WANG, L.; LLORENTE, C.; HARTMANN, P.; YANG, A.; CHEN, P.; SCHNABL, B. Methods to determine intestinal permeability and bacterial translocation during liver disease. Journal of Immunological Methods. 421: 44–53, 2015.
Como citar:

RODRIGUES, Francisco Adelvane de Paulo; MEDEIROS, Pedro Henrique Quintela Soares de ; PRATA, Mara de Moura Gondim; LIMA, Aldo Ângelo Moreira; "Fisiologia da Barreira Epitelial Intestinal", p. 441 -478. In: Sistema Digestório: Integração Básico-Clínica. São Paulo: Blucher, 2016.
ISBN: 9788580391893, DOI 10.5151/9788580391893-18